Advertisement

Earth, Moon, and Planets

, Volume 115, Issue 1–4, pp 101–114 | Cite as

Ca-, Al-Rich Inclusions in Two New Carbonaceous Chondrites from Grove Mountains, Antarctica

  • D. Dai
  • C. Zhou
  • X. Chen
Article
  • 110 Downloads

Abstract

Two new carbonaceous chondrites, GRV 023155 and GRV 050179, collected from the Grove Mountains (GRV), Antarctica, have been classified as the oxidized CV3 and CM2 chondrites, respectively.  A total of 9 Ca-, Al-rich inclusions (CAIs) were found in the two meteorites. Most of the inclusions are extensively altered, with phyllosilicates commonly found in the alteration assemblages of CAIs, chondrules and matrix in the GRV 050179 CM2 chondrites, suggesting that aqueous alteration occurred on the host meteorite parent body. In contrast, feldspathoids and hedenbergite were identified in the CAIs from GRV 023155. The FeO-rich phases in the CAIs from GRV 023155 indicate alteration of these CAIs happened under high oxygen fugacity. All 9 inclusions can be classified as Type A or spinel-pyroxene rich inclusions, and they probably represent a continuum of solar nebular condensation. The survey of Ca-, Al-rich inclusions in GRV 023155 (CV3) and 050179 (CM2) suggests that Type A and spinel-pyroxene inclusions are common in these two meteorites.

Keywords

Antarctica Carbonaceous chondrite Ca-, Al-rich inclusion CAI Nebula 

Notes

Acknowledgments

The authors are very grateful to two anonymous reviewers for their constructive reviews. We thank Dr. Murthy Gudipati and Sasha for critically reading and thoroughly editing the manuscript. The samples were supplied by the China Polar Research Center. This work was supported by the Natural Science Foundation of China (Grant Nos. 41103032, 41372209).

References

  1. J. Aléon, A.N. Krot, K.D. McKeegan, Calcium–aluminum-rich inclusions and amoeboid olivine aggregates from the CR carbonaceous chondrites. Meteorit. Planet. Sci. 37, 1729–1755 (2002)ADSCrossRefGoogle Scholar
  2. J.N. Connelly, M. Bizzarro, A.N. Krot, Å. Nordlund, D. Wielandt, M.A. Ivanova, The absolute chronology and thermal processing of solids in the solar protoplanetary disk. Science 338, 651–654 (2012)ADSCrossRefGoogle Scholar
  3. D. Dai, Y. Lin, B. Miao, W. Shen, D. Wang, Ca-, Al-rich inclusions in three new carbonaceous chondrites from the Grove Mountains, Antarctica: new evidence for a similar origin of the objects in various groups of chondrites. Acta Geol. Sinica 78, 1042–1051 (2004)CrossRefGoogle Scholar
  4. R.C. Greenwood, M.R. Lee, R. Hutchison, D.J. Barber, Formation and alteration of CAIs in Cold Bokkeveld (CM2). Geochim. Cosmochim. Acta 58, 1913–1935 (1994)ADSCrossRefGoogle Scholar
  5. L. Grossman, Condensation in the primitive solar nebula. Geochim. Cosmochim. Acta 36, 597–619 (1972)ADSCrossRefGoogle Scholar
  6. L. Grossman, Petrography and mineral chemistry of Ca-rich inclusions in the Allende meteorite. Geochim. Cosmochim. Acta 39, 433–454 (1975)ADSCrossRefGoogle Scholar
  7. L. Grossman, R. Ganapathy, Trace elements in the Allende meteorite. I—coarse-grained, Ca-rich inclusions. Geochim. Cosmochim. Acta 40, 331–344 (1976a)ADSCrossRefGoogle Scholar
  8. L. Grossman, R. Ganapathy, Trace elements in the Allende meteorite. II—fine-grained, Ca-rich inclusions. Geochim. Cosmochim. Acta 40, 967–977 (1976b)ADSCrossRefGoogle Scholar
  9. Y. Guan, K.D. McKeegan, G.J. MacPherson, Oxygen isotopes in calcium–aluminum-rich inclusions from enstatite chondrites: new evidence for a single CAI source in the solar nebula. Earth Planet. Sci. Lett. 181, 271–277 (2000a)ADSCrossRefGoogle Scholar
  10. Y. Guan, G.R. Huss, G.J. MacPherson, G.J. Wasserburg, Calcium–aluminum-rich inclusions from enstatite chondrites: indigenous or foreign? Science 289, 1330–1333 (2000b)ADSCrossRefGoogle Scholar
  11. G.R. Huss, G.J. MacPherson, G.J. Wasserburg, S.S. Russell, G. Srinivasan, 26Al in CAIs and chondrules from unequilibrated ordinary chondrites. Meteorit. Planet. Sci. 36, 975–997 (2001)ADSCrossRefGoogle Scholar
  12. T.R. Ireland, Correlated morphological, chemical, and isotopic characteristics of hibonites from the Murchison carbonaceous chondrite. Geochim. Cosmochim. Acta 52, 2827–2839 (1988)ADSCrossRefGoogle Scholar
  13. M. Kimura, H. Hiyagon, H. Palme, B. Spettel, D. Wolf, R.N. Clayton, T.K. Mayeda, T. Sato, A. Suzuki, H. Kojima, Yamato 792947, 793408 and 82038: the most primitive H chondrites, with abundant refractory inclusions. Meteorit. Planet. Sci. 37, 1417–1434 (2002)ADSCrossRefGoogle Scholar
  14. T.V.V. King, E.A. King, Grain size and petrography of C2 and C3 carbonaceous chondrites. Meteoritics 13, 47–72 (1978)ADSCrossRefGoogle Scholar
  15. A.S. Kornacki, J.A. Wood, Mineral chemistry and origin of spinel-rich inclusions in the Allende CV3 chondrite. Geochim. Cosmochim. Acta 49, 1219–1237 (1985)ADSCrossRefGoogle Scholar
  16. A.N. Krot, T.J. Fagan, K. Keil, K.D. McKeegan, S. Sahijpal, I.D. Hutcheon, M.I. Petaev, H. Yurimoto, Ca, Al-rich inclusions, amoeboid olivine aggregates, and Al-rich chondrules from the unique carbonaceous chondrite Acfer 094: I. mineralogy and petrology3. Geochim. Cosmochim. Acta 68, 2167–2184 (2004)ADSCrossRefGoogle Scholar
  17. A.N. Krot, M.I. Petaev, K. Keil, Mineralogy and petrology of Al-rich objects and amoeboid olivine aggregates in the CH carbonaceous chondrite North West Africa 739. Chem. Erde 66, 57–76 (2006)CrossRefGoogle Scholar
  18. M.R. Lee, R.C. Greenwood, Alteration of calcium- and aluminium-rich inclusions in the Murray (CM2) carbonacoeus chondrite. Meteoritics 29, 780–790 (1994)ADSCrossRefGoogle Scholar
  19. Y. Lin, M. Kimura, Anorthite-spinel-rich inclusions in the Ningqiang carbonaceous chondrite: genetic links with Type A and C inclusions. Meteorit. Planet. Sci. 33, 435–446 (1998)ADSCrossRefGoogle Scholar
  20. Y. Lin, M. Kimura, Two unusual Type B refractory inclusions in the Ningqiang carbonaceous chondrite: evidence for relicts, xenoliths and multi-heating. Geochim. Cosmochim. Acta 64, 4031–4047 (2000)ADSCrossRefGoogle Scholar
  21. Y. Lin, M. Kimura, Ca–Al-rich inclusions from the Ningqiang meteorite: continuous assemblages of the nebular condensates and genetic link to Type Bs. Geochim. Cosmochim. Acta 67, 2251–2267 (2003)ADSCrossRefGoogle Scholar
  22. Y. Lin, A.E. Goresy, Z. Ouyang, Ca-, Al-rich inclusions and Pt-metal nuggets in the Ningqiang carbonaceous chondrite. Chin. Sci. Bull. 44, 725–731 (1999)CrossRefGoogle Scholar
  23. Y. Lin, M. Kimura, H. Hiyagon, A. Monoi, Unusually abundant refractory inclusions from Sahara 97159 (EH3): a comparative study with other groups of chondrites. Geochim. Cosmochim. Acta 67, 4935–4948 (2003)ADSCrossRefGoogle Scholar
  24. Y. Lin, M. Kimura, B. Miao, D. Dai, A. Monoi, Petrographic comparison of refractory inclusions from different chemical groups of chondrites. Meteorit. Planet. Sci. 41, 67–81 (2006)ADSCrossRefGoogle Scholar
  25. Y. Lin, Y. Guan, L.A. Leshin, Z. Ouyang, D. Wang, Short-lived chlorine-36 in a Ca–Al-rich inclusion from the Ningqiang carbonaceous chondrite. Proc. Natl. Acad. Sci. 102, 1306–1311 (2005)ADSCrossRefGoogle Scholar
  26. G.J. MacPherson, L. Grossman, “Fluffy” Type A Ca-, Al-rich inclusions in the Allende meteorite. Geochim. Cosmochim. Acta 48, 29–46 (1984)ADSCrossRefGoogle Scholar
  27. H.Y. McSween Jr, Carbonaceous chondrites of the Ornans type: a metamorphic sequence. Geochim. Cosmochim. Acta 41, 477–491 (1977)ADSCrossRefGoogle Scholar
  28. S.S. Russell, A.M. Davis, G.J. MacPherson, Y. Guan, G.R. Huss, Refractory inclusions from the ungrouped carbonaceous chondrites MAC 87300 and MAC 88107. Meteorit. Planet. Sci. 35, 1051–1066 (2000)ADSCrossRefGoogle Scholar
  29. S.S. Russell, L. Howard, The texture of a fine-grained calcium–aluminium-rich inclusion (CAI) in three dimensions and implications for early solar system condensation. Geochim. Cosmochim. Acta 116, 52–62 (2013)ADSCrossRefGoogle Scholar
  30. S.S. Russell, G.R. Huss, A.J. Fahey, R.C. Greenwood, R. Hutchison, G.J. Wasserburg, An isotopic and petrologic study of calcium–aluminum-rich inclusions from CO3 meteorites. Geochim. Cosmochim. Acta 62, 689–714 (1998)ADSCrossRefGoogle Scholar
  31. Y.J. Sheng, I.D. Hutcheon, G.J. Wasserburg, Origin of plagioclase-olivine inclusions in carbonaceous chondrites. Geochim. Cosmochim. Acta 55, 581–599 (1991)ADSCrossRefGoogle Scholar
  32. F.H. Shu, H. Shang, A.E. Glassgold, T. Lee, X-rays and fluctuating X-winds from protostars. Science 277, 1475–1479 (1997)ADSCrossRefGoogle Scholar
  33. F.H. Shu, H. Shang, M. Gounelle, A.E. Glassgold, T. Lee, The origin of chondrules and refractory inclusions in chondritic meteorites. Astrophys. J. 548, 1029–1050 (2001)ADSCrossRefGoogle Scholar
  34. E. Stolper, Crystallization sequences of Ca–Al-rich inclusions from Allende—an experimental study. Geochim. Cosmochim. Acta 46, 2159–2180 (1982)ADSCrossRefGoogle Scholar
  35. W.R. Van Schmus, J.A. Wood, A chemical-petrologic classification for the chondritic meteorites. Geochim. Cosmochim. Acta 31, 747–765 (1967)ADSCrossRefGoogle Scholar
  36. W.R. Van Schmus, The mineralogy and petrology of chondritic meteorites. Earth Sci. Rev. 5, 145–184 (1969)ADSCrossRefGoogle Scholar
  37. G. Wang, Y. Lin, D. Dai, Bulk Mg isotopic compositions of Ca-, Al-rich inclusions and amoeboid olivine aggregates. Meteorit. Planet. Sci. 42, 1281–1289 (2007)ADSCrossRefGoogle Scholar
  38. D.A. Wark, Plagioclase-rich inclusions in carbonaceous chondrite meteorites: liquid condensates? Geochim. Cosmochim. Acta 51, 221–242 (1987)ADSCrossRefGoogle Scholar
  39. D.A. Wark, J.F. Lovering, Marker events in the early evolution of the solar system: evidence from rims on Ca–Al-rich inclusions in carbonaceous chondrites. Proceedings on Lunar and Planet Science Conference 8th, 95–112 (1977)Google Scholar
  40. D.A. Wark, W.V. Boynton, The formation of rims on calcium–aluminum-rich inclusions: step I—flash heating. Meteorit. Planet. Sci. 36, 1135–1166 (2001)ADSCrossRefGoogle Scholar
  41. D.A. Wark, J.F. Lovering, The nature and origin of type B1 and B2 Ca–Al-rich inclusions in the Allende meteorite. Geochim. Cosmochim. Acta 46, 2581–2594 (1982)ADSCrossRefGoogle Scholar
  42. S. Yoneda, L. Grossman, Condensation of CaO–MgO–Al2O3–SiO2 liquids from cosmic gases. Geochim. Cosmochim. Acta 59, 3413–3444 (1995)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.Institute of GeologyHunan University of Science and TechnologyXiangtanChina
  2. 2.Institute of GeochemistryChinese Academy of SciencesGuiyangChina
  3. 3.Hunan Provincial Key Laboratory of Shale Gas Resource UtilizationXiangtanChina

Personalised recommendations