Earth, Moon, and Planets

, Volume 116, Issue 1, pp 1–18 | Cite as

HF Accelerated Electron Fluxes, Spectra, and Ionization



Wave particle interactions, an essential aspect of laboratory, terrestrial, and astrophysical plasmas, have been studied for decades by transmitting high power HF radio waves into Earth’s weakly ionized space plasma, to use it as a laboratory without walls. Application to HF electron acceleration remains an active area of research (Gurevich in Usp Fizicheskikh Nauk 177(11):1145–1177, 2007) today. HF electron acceleration studies began when plasma line observations proved (Carlson et al. in J Atmos Terr Phys 44:1089–1100, 1982) that high power HF radio wave-excited processes accelerated electrons not to ~eV, but instead to −100 times thermal energy (10 s of eV), as a consequence of inelastic collision effects on electron transport. Gurevich et al (J Atmos Terr Phys 47:1057–1070, 1985) quantified the theory of this transport effect. Merging experiment with theory in plasma physics and aeronomy, enabled prediction (Carlson in Adv Space Res 13:1015–1024, 1993) of creating artificial ionospheres once ~GW HF effective radiated power could be achieved. Eventual confirmation of this prediction (Pedersen et al. in Geophys Res Lett 36:L18107, 2009; Pedersen et al. in Geophys Res Lett 37:L02106, 2010; Blagoveshchenskaya et al. in Ann Geophys 27:131–145, 2009) sparked renewed interest in optical inversion to estimate electron spectra in terrestrial (Hysell et al. in J Geophys Res Space Phys 119:2038–2045, 2014) and planetary (Simon et al. in Ann Geophys 29:187–195, 2011) atmospheres. Here we present our unpublished optical data, which combined with our modeling, lead to conclusions that should meaningfully improve future estimates of the spectrum of HF accelerated electron fluxes. Photometric imaging data can significantly improve detection of emissions near ionization threshold, and confirm depth of penetration of accelerated electrons many km below the excitation altitude. Comparing observed to modeled emission altitude shows future experiments need electron density profiles to derive more accurate HF electron flux spectra.


HF electron acceleration Optical emissions HF ionization 



We wish to acknowledge essential support from the Air Force Office of Scientific Research (AFOSR), under Grant FA9550-11-1-0236. Appreciation is extended to the Arecibo Observatory staff for its always helpful support to visitors and to its research mission. This data was collected on a field trip with a dear friend and colleague, now sorely missed by many, Ed Weber. Peter Ning provided invaluable support to early optical data processing. George Mantas briefly interrupted a pleasant retirement to resuscitate software for a next generation at USU.


  1. V.J. Abreu, H.C. Carlson, J. Geophys. Res. 82, 1017–1023 (1977)CrossRefADSGoogle Scholar
  2. G. Backus, F. Gilbert, Philos. Trans. R. Soc. London Ser. A 266, 123–192 (1970)MathSciNetCrossRefADSGoogle Scholar
  3. P.A. Bernhardt, C.A. Tepley, L.M. Duncan, J. Geophys. Res. 94, 9071–9092 (1989)CrossRefADSGoogle Scholar
  4. N.F. Blagoveshchenskaya, H.C. Carlson, V.A. Kornienko, T.D. Borisova, M.T. Rietveld, T.K. Yeoman, A. Brekke, Ann. Geophys. 27, 131–145 (2009)CrossRefADSGoogle Scholar
  5. H.C. Carlson, Artificial ionosphere-creation using high power HF transmitters, AFGL1987/ILIR7L, AFGL(PL/CAG), Hanscom AFB, MA, 01731 (1987)Google Scholar
  6. H.C. Carlson, Adv. Space Res. 13, 1015–1024 (1993)CrossRefGoogle Scholar
  7. H.C. Carlson, Proceedings HG3 ionospheric modification by high power radio waves: coupling of plasma processes, URSI General Assembly, Lille France (1996)Google Scholar
  8. H.C. Carlson, V.B. Wickwar, G.P. Manthas, J. Atmos. Terr. Phys. 44, 1089–1100 (1982)CrossRefADSGoogle Scholar
  9. H.C. Carlson, W.E. Gordon, R.L. Showen, J. Geophys. Res. 77, 1242–1250 (1972)CrossRefADSGoogle Scholar
  10. F.T. Djuth, T.R. Pedersen, E.A. Gerken, P.A. Bernhardt, C.A. Selcher, W.A. Bristow, J.H. Kosch, Phys. Rev. Lett. 94, 125001 (2005)CrossRefADSGoogle Scholar
  11. B. Eliasson, X. Shao, G.M. Milikh, E.V. Mishin, K.D. Papadopoulos, J. Geophys. Res. 117, A10321 (2012)CrossRefADSGoogle Scholar
  12. J.A. Fejer, Geophys. Res. Lett. 4(7), 289–290 (1977)CrossRefADSGoogle Scholar
  13. J.A. Fejer, Rev. Geophys. 1(7), 135–153 (1979)CrossRefADSGoogle Scholar
  14. P.A. Fialer, Radio Sci. 9, 923 (1974)CrossRefADSGoogle Scholar
  15. J.L. Fox, M.I. Galand, R.E. Johnson, Space Sci. Rev. 136, 3–62 (2008)CrossRefADSGoogle Scholar
  16. Y. Gong, Z. Qihou, Z. Shaodong, N. Aponte, M. Sulzer, S. Gonzalez, J. Geophys. Res. 117, A08331 (2012)ADSGoogle Scholar
  17. W.E. Gordon, R.L. Showen, H.C. Carlson, J. Geophys. Res. 76, 7808–7813 (1971)CrossRefADSGoogle Scholar
  18. A.V. Gurevich, Usp. Fizicheskikh Nauk. 177(11), 1145–1177 (2007)CrossRefGoogle Scholar
  19. A.V. Gurevich, Y.A. Dimant, G.M. Milikh, V.V. Vaskov, J. Atmos. Terr. Phys. 47, 1057–1070 (1985)CrossRefADSGoogle Scholar
  20. A.V. Gurevich, H.C. Carlson, G.M. Milikh, K.P. Zybin, F.T. Djuth, K. Groves, Geophy. Res. Lett. 27, 2462–2464 (2000)CrossRefADSGoogle Scholar
  21. A.V. Gurevich, H.C. Carlson, K.P. Zybin, Nonlinear structuring and southward shift of a strongly heated region in ionospheric modification. Phys. Lett. A. 288, 231–239 (2001)Google Scholar
  22. A.V. Gurevich, K.P. Zybin, H.C. Carlson, T. Pedersen, Phys. Lett. A 305, 264–274 (2002)CrossRefADSGoogle Scholar
  23. A.V. Gurevich, H.C. Carlson, Y.V. Medvedev, K.P. Zybin, Plasma Phys. Rep. 30(12), 995–1005 (2004)CrossRefADSGoogle Scholar
  24. A.V. Gurevich, K.P. Zybin, H.C. Carlson, Radiophys. Quantum Electron. 48, 9 (2005). (Engl. Transl.)CrossRefGoogle Scholar
  25. B. Gustavsson et al., Ann. Geophys. 23, 1747–1754 (2005)CrossRefADSGoogle Scholar
  26. B. Gustavsson, B. Eliasson, J. Geophys. Res. 113, A08319 (2008)ADSGoogle Scholar
  27. J.C. Haslett, L.R. Megill, Radio Sci. 9, 1005–1019 (1974)CrossRefADSGoogle Scholar
  28. D.L. Hysell, R.H. Varney, M.N. Vlasov, E. Nossa, B. Watkins, T. Pedersen, J.D. Huba, J. Geophys. Res. 117, A02317 (2012)ADSGoogle Scholar
  29. D.L. Hysell, R.J. Miceli, E.A. Kendall, N.M. Schlatter, R.H. Varney, B.J. Watkins, T.R. Pedersen, P.A. Bernhardt, J.D. Huba, J. Geophys. Res. Space Phys. 119, 2038–2045 (2014)CrossRefADSGoogle Scholar
  30. Y. Itikawa, J. Phys. Chem. Ref. Data 35(1), 31 (2006)CrossRefADSGoogle Scholar
  31. K.S. Kalogerakis, T.G. Slanger, E.A. Kendall, T.R. Pedersen, M.J. Kosch, B. Gustavsson, M.T. Rietveld, Ann. Geophys. 27, 2183–2189 (2009)CrossRefADSGoogle Scholar
  32. M.J. Kosch, M.T. Rietveld, T. Hagfors, T.B. Leyser, Geophys. Res. Lett. 27, 2817–2820 (2000)CrossRefADSGoogle Scholar
  33. G.P. Mantas, H.C. Carlson, C. LaHoz, J. Geophys. Res. 86, 561–574 (1981)CrossRefADSGoogle Scholar
  34. C.K. Mutiso, J.M. Hughes, G.G. Sivjee, T. Pedersen, B. Gustavsson, M.J. Kosch, Geophys. Res. Lett. 35, L14103 (2008)CrossRefADSGoogle Scholar
  35. T.R. Pedersen, H.C. Carlson, Radio Sci. 36, 1013–1026 (2001)CrossRefADSGoogle Scholar
  36. T.R. Pedersen, B. Gustavsson, E. Mishin, E. MacKenzie, H.C. Carlson, M. Starks, T. Mills, Geophys. Res. Lett. 36, L18107 (2009)CrossRefADSGoogle Scholar
  37. T. Pedersen, B. Gustavsson, E. Mishin, E. Kendall, T. Mills, H.C. Carlson, A.L. Snyder, Creation of artificial ionospheric layers using high-power HF waves. Geophys. Res. Lett. 37, L02106 (2010)CrossRefADSGoogle Scholar
  38. F.W. Perkins, C. Oberman, E.J. Valeo, J. Geophys. Res. 79, 1478–1496 (1974)CrossRefADSGoogle Scholar
  39. M.H. Rees, R.G. Roble, Rev. Geophys. 13, 201–242 (1975)CrossRefADSGoogle Scholar
  40. M.H. Rees, R.G. Roble, Can. J. Phys. 64, 1608 (1986)CrossRefADSGoogle Scholar
  41. G. Rose, B. Grandal, E. Neske, W. Ott, K. Spenner, J. Holtet, K. Mâseide, J. Trøim, J. Geophys. Res. 90, 2851–2860 (1985)CrossRefADSGoogle Scholar
  42. R.W. Schunk, P.B. Hays, Planet. Space Sci. 19, 113 (1971)CrossRefADSGoogle Scholar
  43. T. Sergienko, B. Gustavsson, U. Bringstrom, K. Axelsson, Geophysical 30, 885–895 (2012)CrossRefADSGoogle Scholar
  44. W. Simon, C.G. Gronoff, J. Lilensten, H. Ménager, M. Barthélemy, Ann. Geophys. 29, 187–195 (2011)CrossRefADSGoogle Scholar
  45. D.P. Sipler, M.A. Biondi, J. Geophys. Res. 77, 6202–6212 (1972)CrossRefADSGoogle Scholar
  46. D.J. Strickland, J.R. Jasperse, J.A. Whalen, J. Geophys. Res. 88, 8051 (1983)CrossRefADSGoogle Scholar
  47. W.F. Utlaut, R. Cohen, Science 174, 245–254 (1971)CrossRefADSGoogle Scholar
  48. J. Weinstock, Radio Sci. 9, 1085–1087 (1974)CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.Physics Department, CASSUtah State UniversityLoganUSA
  2. 2.Physics DepartmentUniversity of New HampshireDurhamUSA

Personalised recommendations