Earth, Moon, and Planets

, Volume 114, Issue 1–2, pp 59–86 | Cite as

Contrasting Aerodynamic Morphology and Geochemistry of Impact Spherules from Lonar Crater, India: Some Insights into Their Cooling History

  • D. Ray
  • S. Misra


The ~50 or 570 ka old Lonar crater, India, was excavated in the Deccan Trap flood basalt of Cretaceous age by the impact of a chondritic asteroid. The impact-spherules known from within the ejecta around this crater are of three types namely aerodynamically shaped sub-mm and mm size spherules, and a sub-mm sized variety of spherule, described as mantled lapilli, having a core consisting of ash-sized grains, shocked basalt and solidified melts surrounded by a rim of ash-sized materials. Although, information is now available on the bulk composition of the sub-mm sized spherules (Misra et al. in Meteorit Planet Sci 7:1001–1018, 2009), almost no idea exists on the latter two varieties. Here, we presented the microprobe data on major oxides and a few trace elements (e.g. Cr, Ni, Cu, Zn) of mm-sized impact spherules in unravelling their petrogenetic evolution. The mm-sized spherules are characterised by homogeneous glassy interior with vesicular margin in contrast to an overall smooth and glassy-texture of the sub-mm sized spherules. Undigested micro-xenocrysts of mainly plagioclase, magnetite and rare clinopyroxene of the target basalt are present only at the marginal parts of the mm-sized spherules. The minor relative enrichment of SiO2 (~3.5 wt% in average) and absence of schlieren structure in these spherules suggest relatively high viscosity of the parent melt droplets of these spherules in comparison to their sub-mm sized counterpart. Chemically homogeneous mm-sized spherule and impact-melt bomb share similar bulk chemical and trace element compositions and show no enrichment in impactor components. The general depletion of Na2O within all the Lonar impactites was resulted due to impact-induced volatilisation effect, and it indicates the solidification temperature of the Lonar impactites close to 1,100 °C. The systematic geochemical variation within the mm-sized spherules (Mg# ~0.38–0.43) could be attributed to various level of mixing between plagioclase-dominated impact melts and ultrafine pyroxene and/or titanomagnetite produced from the target basalt due to impact. Predominance of schlieren and impactor components (mainly Cr, Ni), and nearly absence of vesicles in the sub-mm sized spherules plausibly suggest that these quenched liquid droplets could have produced from the impactor-rich, hotter (~1,100 °C or more) central part of the plume, whereas the morpho-chemistry of the mm-sized spherules induces their formation from the relatively cool outer part of the same impact plume.


mm-Sized impact spherules Geochemical fractionation Heterogeneous impact plume Sub-mm sized spherule Meteorite geochemistry 



We are indebted to H. E. Newsom for his continuous encouragement during the progress of this research. S. M. is grateful to the PLANEX, Department of Space, Government of India, for a visiting scientist position at the Physical Research Laboratory, Ahmedabad, India, during January, 2012, and to the Productivity Research Grant (RL-40) of the University of KwaZulu-Natal, Durban, South Africa, and the National Research Federation, South Africa, rated researcher grant (UKZN cost center no. 4972) for this research work. Constructive comments and suggestions by A P Jones and Ian Crawford, Associate Editor, are greatly appreciated.

Supplementary material

11038_2014_9451_MOESM1_ESM.pdf (637 kb)
Supplementary material 1 (PDF 636 kb)
11038_2014_9451_MOESM2_ESM.pdf (657 kb)
Supplementary material 2 (PDF 657 kb)
11038_2014_9451_MOESM3_ESM.doc (70 kb)
Supplementary material 3 (DOC 69 kb)
11038_2014_9451_MOESM4_ESM.doc (44 kb)
Supplementary material 4 (DOC 44 kb)
11038_2014_9451_MOESM5_ESM.doc (70 kb)
Supplementary material 5 (DOC 69 kb)
11038_2014_9451_MOESM6_ESM.doc (78 kb)
Supplementary material 6 (DOC 78 kb)


  1. M. Arif, N. Basavaiah, S. Misra, K. Deenadayalan, Variations in magnetic properties of target basalts with the direction of asteroid impact: example from Lonar crater, India. Meteorit. Planet. Sci. 47, 1305–1323 (2012)ADSCrossRefGoogle Scholar
  2. R.A. Beal, H.E. Newsom, S.P. Wright, S. Misra, Discovery of mantled sub-mm lapilli from the Lonar crater, India. 42nd Lunar and Planetary Science Conference, abstract no 1509 (CD-ROM) (2011)Google Scholar
  3. T. Bose, S. Misra, S. Chakraborty, K. Reddy, Gamma (λ) ray activity as a tool for identification of hidden ejecta deposits around impact crater on basaltic target: example from Lonar crater, India. Earth Moon Planet. 111, 31–46 (2013)ADSCrossRefGoogle Scholar
  4. M.B. Boslough, D.A. Crawford, Low-altitude airbursts and the impact threat. Int. J. Impact Eng. (2008). doi: 10.1016/j.ijimpeng.2008.07.053 Google Scholar
  5. R. Chakrabarti, A.R. Basu, Trace element and isotopic evidence for Archean basement in the Lonar crater impact breccias, Deccan Volcanic Province. Earth Planet. Sci. Lett. 247, 197–211 (2006)ADSCrossRefGoogle Scholar
  6. A.L. Chenet, X. Quidelleur, F. Fluteau, V. Courtillot, 40K–40Ar dating of the main Deccan large igneous province: further evidence of KTB age and short duration. Earth Planet. Sci. Lett. 263, 1–15 (2007)ADSCrossRefGoogle Scholar
  7. V. Courtillot, Y. Gallet, R. Rocchia, G. Féraud, E. Robin, C. Hofmann, N. Bhandari, Z.G. Ghevariya, Cosmic markers, 40Ar/39Ar dating and paleomagnetism of the KT sections in the Anjar area of the Deccan large igneous province. Earth Planet. Sci. Lett. 182, 137–156 (2000)ADSCrossRefGoogle Scholar
  8. A.P. Crósta, C. Koeberl, R.A. Furuie, C. Kazzuo-Vieira, The first description and confirmation of the Vista Alegre impact structure in the Paraná flood basalts of southern Brazil. Meteorit. Planet. Sci. 45, 181–194 (2010)ADSCrossRefGoogle Scholar
  9. A.P. Crósta, C. Kazzuo-Vieira, L. Pitarello, C. Koeberl, T. Kenkmann, Geology and impact features of Vargeão Dome, southern Brazil. Meteorit. Planet. Sci. 47, 51–71 (2012)ADSCrossRefGoogle Scholar
  10. K. Deenadayalan, N. Basavaiah, S. Misra, H.E. Newsom, Absence of Archean basement in the genesis of Lonar crater, India. Meteoritical Society meeting abstract no 5388 (2009),
  11. V.I. Feldman, L.V. Sazonova, Y.V. Mironov, I.G. Kapustkina, B.A. Ivanov, Circular structure Logancha as possible meteorite crater in basalts of the Tunguska syneclise. Proceedings 14th Lunar and Planetary Science Conference (1983), pp. 191–192Google Scholar
  12. K. Fredriksson, A. Dube, D.J. Milton, M.S. Balasundaram, Lonar Lake, India: an impact crater in basalt. Science 180, 862–864 (1973)ADSCrossRefGoogle Scholar
  13. K. Fredriksson, P. Brenner, A. Dube, D. Milton, C. Mooring, J.A. Nelen, Petrology, mineralogy and distribution of Lonar (India) and lunar impact breccias and glasses. Smithson. Contrib. Earth Sci. 22, 1–12 (1979)Google Scholar
  14. R.F. Fudali, D.J. Milton, K. Fredriksson, A. Dube, Morphology of Lonar crater, India: comparisons and implications. Moon Planets 23, 493–515 (1980)ADSCrossRefGoogle Scholar
  15. S. Ghosh, S.K. Bhaduri, Petrography and petrochemistry of impact melts from Lonar crater, Buldana district, Maharashtra, India. Indian Miner. 57, 1–26 (2003)Google Scholar
  16. D. Giordano, J.K. Russel, D.B. Dingwell, Viscosity of magmatic liquids: a model. Earth Planet. Sci. Lett. 271, 123–134 (2008)ADSCrossRefGoogle Scholar
  17. J.J. Hagerty, H.E. Newsom, Hydrothermal alteration at the Lonar Lake impact structure, India: implications for impact cratering on Mars. Meteorit. Planet. Sci. 38, 365–381 (2003)ADSCrossRefGoogle Scholar
  18. C. Hofmann, G. Féraud, V. Cortillot, 40Ar/39Ar dating of mineral separates and whole rocks from the Western Ghats lava pile: further constraints on duration and age of the Deccan Traps. Earth Planet. Sci. Lett. 180, 13–27 (2000)ADSCrossRefGoogle Scholar
  19. A.G. Jhingran, K.V. Rao, Lonar lake and its salinity. Rec. Geol. Surv. India 85, 313–334 (1958)Google Scholar
  20. A.P. Jones, A.T. Kearsley, C.R.L. Friend, E. Robin, A. Beard, A. Tamura, S. Trickett, P. Claeys, Are there signs of a large Palaeocene impact, preserved around Disko bay, W. Greenland?: Nuussuaq spherule beds origin by impact instead of volcanic eruption? in Large Meteorite Impacts III, vol. 384, ed. by K. Kenkman, F. Hörz, A. Deutsch. Geological Society of America Special Paper (2005), pp 281–298Google Scholar
  21. F. Jourdan, F. Moynier, C. Koeberl, S. Eroglu, 40Ar/39Ar age of the Lonar crater and consequence for the geochronology of planetary impacts. Geology 39, 671–674 (2011)ADSCrossRefGoogle Scholar
  22. N.R. Karmalkar, S. Rege, W.L. Griffin, S.Y. O’Reilly, Alkaline magmatism from Kutch, NW India: implications for plume–lithosphere interaction. Lithos 81, 101–119 (2005)ADSCrossRefGoogle Scholar
  23. R.R. Keays, P. Lightfoot, Formation of Ni–Cu–Platinum group element sulphide mineralisation in the Sudbury impact melt sheet. Mineral. Petrol., vol. 82 (Springer, Vienna, 2004), pp. 217–258Google Scholar
  24. S.W. Kieffer, R.B. Schaal, R. Gibbons, F. Hörz, D.J. Milton, A. Dube, Shocked basalt from Lonar Impact Crater, India, and experimental analogues. Proceedings 7th Lunar Science Conference (1976), pp. 1391–1412Google Scholar
  25. C. Koeberl, N. Bhandari, D. Dhingra, P.O. Suresh, V.L. Narasimham, Lonar impact crater, India: occurrence of a basaltic suevite. 35th Lunar and Planetary Science Conference, abstract no 1751 (CD-ROM) (2004)Google Scholar
  26. G. Komatsu, P. Senthil Kumar, K. Goto, Y. Sekine, C. Giri, T. Matsui, Drainage systems of Lonar Crater, India: Contributions to Lonar Lake hydrology and crater degradation. Planet. Space Sci. 95, 45–55 (2014)Google Scholar
  27. M.S. Krishnan, Geology of India and Burma (Higginbothams, Madras, 1968)Google Scholar
  28. P.S. Kumar, Structural effects of meteorite impact on basalt: evidence from Lonar crater, India. J. Geophys. Res. 110, B12402 (2005)ADSCrossRefGoogle Scholar
  29. K. Lodders, Solar system abundances and condensation temperatures of the elements. Astrophys. J. 591, 1220–1247 (2003)ADSCrossRefGoogle Scholar
  30. K.L. Louzada, B.P. Weiss, A.C. Maloof, S.T. Stewart, N.L. Swanson-Hysell, S.A. Soule, Paleomagnetism of Lonar impact crater, India. Earth Planet. Sci. Lett. 275, 308–319 (2008)ADSCrossRefGoogle Scholar
  31. A.C. Maloof, S.T. Stewart, B.P. Weiss, S.A. Soule, N.L. Swanson-Hyssell, K.L. Louzada, I. Garrick-Bethell, P.M. Poussart, Geology of Lonar crater, India. Bull. Geol. Soc. Am. 122, 109–126 (2010)CrossRefGoogle Scholar
  32. W.F. McDonough, S.S. Sun, The composition of the Earth. Chem. Geol. 120, 223–253 (1995)CrossRefGoogle Scholar
  33. Y.V. Mironov, V.M. Ladygin, N.F. Pchlintseva, N.R. Kuz’min, V.M. Ryakhovskiy, Low pressure impact breccias from basalts of Logancha astroblem (abstract in russian). All-Union Meteorite Conference, Tallinn (1987), pp. 30–32Google Scholar
  34. S. Misra, Comments on ‘Trace element and isotopic evidence for Archean basement in the Lonar crater impact breccia, Deccan volcanic province’ by R. Chakrabarti and A. R. Basu in Earth Planet. Sci. Lett. 247, 197–211. Earth Planet. Sci. Lett. 250, 667–668 (2006)ADSCrossRefGoogle Scholar
  35. S. Misra, H.E. Newsom,Fractionation of impactor components within impact spherules from Lonar crater, India. 72nd Annual Meeting of the Meteoritical Society, abstract no 5389 (2009)Google Scholar
  36. S. Misra, H.E. Newsom, M.S. Prasad, J.W. Geissman, A. Dube, D. Sengupta, Geochemical identification of impactor for Lonar crater, India. Meteorit. Planet. Sci. 7, 1001–1018 (2009)ADSCrossRefGoogle Scholar
  37. S. Misra, M. Arif, N. Basavaiah, P.K. Srivastava, A. Dube, Structural and anisotropy of magnetic susceptibility (AMS) evidence for oblique impact on terrestrial basalt flows: Lonar crater, India. Bull. Geol. Soc. Am. 122, 563–574 (2010)CrossRefGoogle Scholar
  38. S. Misra, H.E. Newsom, Incompatible trace element fractionation in impact-melts of Lonar crater, India—evidence of differential impact melting of target Deccan basalt. 42nd Lunar and Planetary Science Conference, abstract no 1060 (CD-ROM) (2011)Google Scholar
  39. S. Misra, M. Arif, H.E. Newsom, D. Ray, Hydrothermal alteration of Lonar crater basalts, India-impact related? 44th Lunar and Planetary Science Conference, abstract no 1030 (CD-ROM) (2013)Google Scholar
  40. D.W. Mittlefehldt, T.H. See, F. Hörz, Dissemination and fractionation of projectile materials in the impact melts from Wabar Crater, Saudi Arabia. Meteoritics 27, 361–370 (1992)ADSCrossRefGoogle Scholar
  41. D.W. Mittlefehldt, T.H. See, E.R.D. Scott, Siderophile element fractionation in Meteor Crater impact glasses and metallic spherules (abstract). 24th Lunar and Planetary Science Conference (1993), pp. 995–996Google Scholar
  42. D.W. Mittlefehldt, F. Hörz, Siderophile element fractionation in impact glasses from Meteor Crater. 29th Lunar and Planetary Science Conference, abstract no 1771 (CD-ROM) (1998)Google Scholar
  43. A. Muan, E.F. Osborn, Phase equilibria at liquidus temperatures in the system MgO–FeO–Fe2O3–SiO2. Am. Ceram. Soc. J. 39, 121–140 (1956)CrossRefGoogle Scholar
  44. A. Nakamura, Y. Yokoyama, Y. Sekine, K. Goto, G. Komatsu, P. Senthil Kumar, H. Matsuzaki, I. Kaneoka, T. Matsui, Formation and geomorphologic history of the Lonar impact crater deduced from in situ cosmogenic 10Be and 26Al. Geochem. Geophys. Geosyst. 15 (2014). doi: 10.1002/2014GC005376
  45. N.C. Nandy, V.B. Dey, Origin of the Lonar lake and its alkalinity. J. Tata Iron Steel Co. 8, 1–12 (1961)Google Scholar
  46. V.K. Nayak, Glassy objects (impactite glasses?) a possible new evidence for meteoritic origin of the Lonar crater, Maharastra State, India. Earth Planet. Sci. Lett. 14, 1–6 (1972)ADSCrossRefGoogle Scholar
  47. H.W. Nesbitt, R.E. Wilson, Recent chemical weathering of basalts. Am. J. Sci. 292(10), 740–777 (1992)CrossRefGoogle Scholar
  48. H.E. Newsom, M.B.E. Boslough, Impact melt formation by low altitude airburst processes, evidence from small terrestrial craters and numerical modelling. 39th Lunar and Planetary Science Conference, abstract no 1460 (CD-ROM) (2008)Google Scholar
  49. H.E. Newsom, S. Misra, S.P. Wright, N. Muttik, Contrasting alteration and enrichment of mobile elements during weathering of basaltic ejecta and ancient soils at Lonar crater, India. 41st Lunar and Planetary Science Conference, abstract no 2210 (CD-ROM) (2010)Google Scholar
  50. S. Osae, S. Misra, C. Koeberl, D. Sengupta, S. Ghosh, Target rocks, impact glasses, and melt rocks from the Lonar impact crater, India: petrography and geochemistry. Meteorit. Planet. Sci. 40, 1473–1492 (2005)ADSCrossRefGoogle Scholar
  51. K. Pandey, S.K. Pattanayak, K.V. Subbarao, P. Navaneethakrishnan, T.R. Venkatesan, 40Ar–39Ar age of a lava flow from the Bhimashankar Formation, Giravali Ghat, Deccan Traps. Proc. Indian Acad. Sci. (Earth Planet. Sci.) 113, 755–758 (2004)ADSGoogle Scholar
  52. V. Purra, H. Huber, J. Kirs, A. Kärki, K. Suuroja, K. Kisimäe, J. Kivisilla, A. Kleesment, M. Konsa, U. Preeden, S. Suuroja, C. Koeberl, Geology, petrography, shock petrography, and geochemistry of impactites and target rocks from the Kärdla crater, Estonia. Meteorit. Planet. Sci. 39, 425–451 (2004)ADSCrossRefGoogle Scholar
  53. D. Ray, S. Misra, M. Arif, Contrasting aerodynamic morphology and geochemistry of impact spherules from Lonar crater, India: Some insights into their cooling history. 44th Lunar and Planetary Science Conference, abstract no 1031 (CD-ROM) (2013a)Google Scholar
  54. D. Ray, S. Misra, R. Banerjee. Geochemical variability of MORBs along slow to intermediate spreading Carlsberg-Central Indian Ridge, Indian Ocean. J. Asian Earth Sci. 70–71, 125–141 (2013b)Google Scholar
  55. G.V.S.P. Rao, M.S. Bhalla, Lonar lake: paeomagnetic evidence of shock origin. Geophys. J. R. Astron. Soc. 77, 847–862 (1984)CrossRefGoogle Scholar
  56. M.K. Reichow, A.D. Saunders, R.V. White, M.S. Pringle, A.I. Al’Mukhamedov, A.I. Medvedev, N.P. Kirda, 40Ar/39Ar dates from the West Siberian Basin: Siberian flood basalt province doubled. Science 296, 1846–1849 (2002)ADSCrossRefGoogle Scholar
  57. A.B.E. Rocholl, K. Simon, K.P. Jochum, F. Bruhn, R. Gehann, U. Kramar, W. Luecke, M. Molzahn, E. Pernicka, M. Seufert, B. Spettel, J. Stummeier, Chemical characterization of NIST silicate glass certified reference material SRM 610 by ICP-MS, TIMS, LIMS, SSMS, INAA, AAS and PIXE. Geostand. Newsl. 21, 101–114 (1997)CrossRefGoogle Scholar
  58. D. Sengupta, N. Bhandari, S. Watanabe, Formation age of Lonar Meteor Crater, India. Rev. Fis. Apl. Instrum. 12, 1–7 (1997)Google Scholar
  59. P. Senthil Kumar, K.J. Prasanna Lakshmi, N. Krishna, R. Menon, U. Sruthi, V. Keerthi, A. Senthil Kumar, D. Mysaiah, T. Seshunarayana, M.K. Sen, Impact fragmentation of Lonar crater, India: implications for impact cratering processes in basalt. J. Geophys. Res. Planet 119, 2029–2059 (2014)Google Scholar
  60. H.R. Shaw, Viscosities of magmatic silicate liquids: an empirical method of prediction. Am. J. Sci. 272, 870–893 (1972)ADSCrossRefGoogle Scholar
  61. M. Shyam Prasad, V. Khedekar, Impact microcrater morphology in Australian microtektites. Meteorit. Planet. Sci. 38(9), 1351–1371 (2003)ADSCrossRefGoogle Scholar
  62. T.H. Son, C. Koeberl, Chemical variation in Lonar impact glasses and impactites. GFF 129, 161–176 (2007)CrossRefGoogle Scholar
  63. W.C. Storey, Volatilization studies on a terrestrial basalt, and their applicability to volatilisation from the lunar surface. Nat. Phys. Sci. 241, 154–157 (1973)ADSCrossRefGoogle Scholar
  64. D. Storzer, C. Koeberl, Age of Lonar impact Crater, India: First results from fission track dating. Paper presented at 35th Lunar Planetary Science Conference, abstract no. 1309 (CD ROM) (2004)Google Scholar
  65. W.B. Strobe Jr, A.N. Garg, M.Z. Ali, W.D. Ehmann, A chemical study of the impact glasses and basalts from Lonar crater, India. Meteoritics 13, 201–208 (1978)ADSCrossRefGoogle Scholar
  66. R.N. Sukeshwala, A. Poldervaart, Deccan basalts of the Bombay area, India. Bull. Geol. Soc. Am. 69, 1475–1494 (1958)Google Scholar
  67. M.J. Toplis, D.B. Dingwell, G. Libourel, The effect of phosphorous on the redox ratio, viscosity, and density of an evolved ferro-basalt. Contrib. Mineral. Petrol. 117, 293–304 (1994)ADSCrossRefGoogle Scholar
  68. V. Venkatesh, Geology and origin of the Lonar crater, Maharastra. Rec. Geol. Surv. India 97, 30–45 (1967)Google Scholar
  69. H.S. Washington, Deccan Traps and other Plateau basalts. Bull. Geol. Soc. Am. 33, 765–805 (1922)Google Scholar
  70. B.P. Weiss, S. Pederson, I. Garrick-Bethell, S.T. Stewart, K.L. Louzada, A.C. Maloof, N.L. Swanson-Hysell, Paleomagnetism of impact spherules from Lonar crater, India and a test for impact-generated fields. Earth Planet. Sci. Lett. 298, 66–76 (2010)ADSCrossRefGoogle Scholar
  71. W.D. West, The petrography and petrogenesis of fourtyeight flows of Deccan trap penetrated by borings in western India. Trans. Natl. Inst. Sci. (Indian Natl. Sci. Acad.) 4(1), 1–56 (1958)Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.PLANEXPhysical Research LaboratoryAhmedabadIndia
  2. 2.Discipline of Geological Sciences, SAEESUniversity of KwaZulu-NatalDurbanSouth Africa

Personalised recommendations