Advertisement

Earth, Moon, and Planets

, Volume 105, Issue 2–4, pp 385–389 | Cite as

Exomoon Simulations

  • A. E. Simon
  • Gy. M. Szabó
  • K. Szatmáry
Article

Abstract

We introduce and describe our newly developed code that simulates light curves and radial velocity curves for arbitrary transiting exoplanets and its satellite. The most important feature of the program is the calculation of radial velocity curves and the Rossiter–McLaughlin effect in such systems. We discuss the possibilities for detecting the exomoons taking the abilities of Extremely Large Telescopes into account. We show that satellites may be detected also by their RM effect in the future, probably using less accurate measurements than promised by the current instrumental developments. Thus, RM effect will be an important observational tool in the exploration of exomoons.

Keywords

Planetary systems Planets and satellites Photometry Radial velocities Numerical methods 

Notes

Acknowledgements

This work has been supported by the OTKA K76816 Grant and the Bolyai János Research Fellowship of the Hungarian Academy of Sciences. The traveling and living expenses were financed by the National Office for Research and Technology, Hungary (Mecenatura Grant), the “Lendület Fiatal Kutatói Program” of the Hungarian Academy of Sciences and a funding provided by the Conference LOC.

References

  1. E. Agol, J. Steffen, R. Sari, W. Clarkson, MNRAS. 359, 567 (2005)CrossRefADSGoogle Scholar
  2. H.J. Deeg, IAUS. 253, 388 (2009)ADSGoogle Scholar
  3. R.F. Díaz et al., Astrophys. J. 682, 49 (2008)CrossRefADSGoogle Scholar
  4. D.M. Kipping, MNRAS. 389, 1383 (2008)CrossRefADSGoogle Scholar
  5. D.M. Kipping, MNRAS. 396, 1797 (2009)CrossRefADSGoogle Scholar
  6. M. Mayor et al., Astron. Astrophys. arXiv:0906.2780 (2009, accepted)Google Scholar
  7. K.M. Lewis, P.D. Sackett, R.A. Mardling, Astrophys. J. 685, 153 (2008)CrossRefADSGoogle Scholar
  8. C.-H. Li et al., Nature. 452, 610 (2008)CrossRefADSGoogle Scholar
  9. S.J. O’Toole et al., MNRAS. 386, 516 (2008)CrossRefADSGoogle Scholar
  10. A. Pál, B.Kocsis, MNRAS. 389, 191 (2008)CrossRefADSGoogle Scholar
  11. D.B. Paulson, S.Yelda, PASP. 118, 706 (2006)CrossRefADSGoogle Scholar
  12. S.H. Saar, The Future of Cool-Star Astrophysics: 12th Cambridge Workshop on Cool Stars, ed. by A. Brown, G.M. Harper, T.R. Ayres (University of Colorado, Colorado, 2003), p. 694Google Scholar
  13. P. Sartoretti, J. Schneider, Astron. Astrophys. Suppl. Ser. 134, 553 (1999)CrossRefADSGoogle Scholar
  14. A.E. Simon, K. Szatmáry, Gy. M. Szabó, Astron. Astrophys. 470, 727 (2007)CrossRefADSGoogle Scholar
  15. C. Sterken, in The Light-Time Effect in Astrophysics, ed. by C. Sterken, ASP Conference Series vol. 335 (Astronomical Society of the Pacific, San Francisco, 2005), pp. 25–36. Google Scholar
  16. Gy.M. Szabó, K. Szatmáry, Zs. Divéki, A. Simon, Astron. Astrophys. 450, 395 (2006)CrossRefADSGoogle Scholar
  17. J.T. Wright, PASP. 117, 657 (2005)CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.Department Experimental Physics and Astronomical ObservatoryUniversity of SzegedSzegedHungary

Personalised recommendations