Advertisement

Earth, Moon, and Planets

, Volume 98, Issue 1–4, pp 205–245 | Cite as

6. Environmental Context

  • Hervé Martin
  • Philippe Claeys
  • Muriel Gargaud
  • Daniele Pinti
  • Franck Selsis
Article

Abstract

On Earth, the Archaean aeon lasted from 4.0 to 2.5 Ga; it corresponds to a relatively stable period. Compared with today, internal Earth heat production was several times greater resulting in high geothermal flux that induced the genesis of rocks such as komatiites and TTG suites, which are no more generated on Earth since 2.5 Ga. Similarly, the details of plate tectonic modalities (plate size, plate motion rate, plate thickness, tectonic style, irregular crustal growth, etc...) were different of modern plate tectonics. Both atmosphere and ocean compositions have been progressively modified and the greater heat production favoured the development of hydrothermalism and therefore created niches potentially favourable for the development of some forms of life. Catastrophic events such as giant meteorite falls or world-sized glaciations drastically and suddenly changed the environment of Earth surface, thus being able to strongly affect development of life. Even if specialists still debate about the age of the oldest indubitable fossil trace of life, Archaean can be considered as having been extremely favourable for life development and diversification.

Keywords

Archaean continental growth atmosphere and ocean evolution meteoritic impacts glaciations young sun 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Addison W. D., Brumpton G. R., Vallini D. A., McNaughton N. J., Davis D. W., Kissin S. A., Fralick P. W., Hammond A. L. (2005). Geology 33(3):193–196.CrossRefADSGoogle Scholar
  2. Albarède F. (1998). Tectonophysics 296:1–14.CrossRefADSGoogle Scholar
  3. Albarède F. (2005). In: Gargaud M., Claeys P., Martin H. (eds), Des atomes aux planètes habitables. Presses Universitaires de Bordeaux, Bordeaux, pp. 79–102.Google Scholar
  4. Anbar A. D., Knoll A. H. (2002). Science 297:1137–1141.ADSCrossRefGoogle Scholar
  5. Appel P. W. U., Rollinson H. R., Touret J. L. R. (2001). Precambrian Res. 112:27–49.CrossRefGoogle Scholar
  6. Baraffe I., Chabrier, G., Allard F., Hauschildt P. H. (1998). Astron. Astrophys. 337:403.ADSGoogle Scholar
  7. Beaumont V., Robert F. (1999). Precambrian Res. 96(1–2):63–82.CrossRefGoogle Scholar
  8. Bekker, A., Holland, H. D., Wang, P.-L., Rumble III, D., Stein, H. J., Hannah, J. L., Coetzee, L. L. and Beukes, N. J.: 2004, Nature 427, 117–120Google Scholar
  9. Berner R. A., Beerling D. J., Dudley R., Robinson J. M., Wildman Jr R. A. (2003). Ann. Rev. Earth Planetary Sci. 31:105–134.ADSCrossRefGoogle Scholar
  10. Bischoff J. L., Dickson F. W. (1975). Earth Planetary Sci. Lett. 25:385–397.ADSCrossRefGoogle Scholar
  11. Bischoff, J. L. and Rosenbauer, R. J.: 1988, Geochim. Cosmochim. Acta 52, 2121–212Google Scholar
  12. Bourdon E., Eissen J.-P., Gutscher M.-A., Monzier M., Hall M. L., Cotten J. (2003). Earth and Planetary Science Letters 205(3–4):123–138.ADSCrossRefGoogle Scholar
  13. Bourrouilh R. (2001). In: Gargaud M., Despois D., Parisot J.-P. (eds), L’environnement de la Terre primitive. Presses Universitaires de Bordeaux, Bordeaux, pp. 287–320.Google Scholar
  14. Brasier, M. D., Green, O. R., Jephcoat, A. P., Kleppe, A. K., Van Kranendonk, M. J., Lindsay, J. F., Steele, A. and Grassineau, N. V.: 2002, Nature 416, 76–81Google Scholar
  15. Brocks J. J., Buick R., Logan G. A., Summons R. E. (2003a). Geochemica et Cosmochemica Acta 67:4289–4319.ADSCrossRefGoogle Scholar
  16. Brocks J. J., Logan G. A., Buick R., Summons R. E. (1999). Science 285:1033–1036.CrossRefGoogle Scholar
  17. Brocks J. J., Buick R., Summons R. E., Logan G. A. (2003b). Geochimica et Cosmochimica Acta 67(22):4321–4335.ADSCrossRefGoogle Scholar
  18. Brown G. C. (1985). In: Snelling N. (eds), The Chronology of the Geological Record. Memoir – Geological Society of London, London, pp. 326–334.Google Scholar
  19. Buick R. (1992). Nature 255:74–77.Google Scholar
  20. Byerly G. R., Lowe D. R. (1994). Geochemica et Cosmochemica Acta 58(16):3469–3486.ADSCrossRefGoogle Scholar
  21. Canfield D. E., Teske A. (1996). Nature 382:127–132.ADSCrossRefGoogle Scholar
  22. Catling D. C., Claire M. W. (2005). Earth Planetary Sci. Lett. 237:1–20.ADSCrossRefGoogle Scholar
  23. Catling D. C., Zahnle K. J., McKay C. P. (2001). Science 293:839–843.ADSCrossRefGoogle Scholar
  24. Chadwick B., Claeys P., Simonson B. (2001). J. Geol. Soc. London 158:331–340.CrossRefGoogle Scholar
  25. Channer D. M. D. R., de Ronde C. E. J., Spooner E. T. C. (1997). Earth Planetary Science Letters 150:325–335.ADSCrossRefGoogle Scholar
  26. Commeyras A., Taillades J., Collet H., Boiteau L., Vandenabeele-Trambouze O., Pascal R., Rousset A., Garrel L., Rossi J., Biron J., Lagrille O., Plasson R., Souaid E., Danger G., Selsis F., Dobrijévic M., Martin H. (2004). Origins Life Evol Biosphere 34: 35–55.ADSCrossRefGoogle Scholar
  27. Condie K. C. (1989). Plate Tectonics and Crustal Evolution. Pergamon, Oxford, 476 ppGoogle Scholar
  28. Condie K. C. (1998). Earth Planetary Sci. Lett. 163(1–4):97–108.ADSCrossRefGoogle Scholar
  29. Cornell D. H., Schütte S. S., Elington B. L. (1996). Precambrian Res. 79:101–123.CrossRefGoogle Scholar
  30. Cowen, R.: 2005, The History of Life, 4th edn. Blackwell Scientific, 324 ppGoogle Scholar
  31. Culler T. S., Becker T. A., Muller R. A., Renne P. R. (2000). Science 287:1785–1788.ADSCrossRefGoogle Scholar
  32. de Ronde C. E. J., Channer D. M. d. Faure K., Bray C. J., Spooner T. C. (1997). Geochimica and Cosmochimica Acta 61(19):4025–4042.ADSCrossRefGoogle Scholar
  33. Delano J. W. (2001). Origins Life Evol. Biosphere 31(4–5):311–341.ADSCrossRefGoogle Scholar
  34. Des Marais D. J. (2000). Science 289:1703–1705.Google Scholar
  35. Des Marais D. J., Strauss H., Summons R. E., Hayes J. M. (1992). Nature 359:605–609.ADSCrossRefGoogle Scholar
  36. Dypvik H., Burchell M. J., Claeys P. (2003). In: Dypvik H., Burchell M. J., Claeys P. (eds), Cratering in Marine Environments and on Ice. Springer, Berlin, pp. 1–19.Google Scholar
  37. Evans, D. A., Beukes N. J., Kirschvink J. L. (1997). Nature 386:262–266.CrossRefADSGoogle Scholar
  38. Farquhar J., Bao H. M., Thiemens M. (2000). Science 289(5480):756–758.ADSCrossRefGoogle Scholar
  39. Farquhar J., Savarino J., Airieau S., Thiemens M. H. (2001). J. Geophys. Res. Planets 106(E12):32829–32839.ADSCrossRefGoogle Scholar
  40. Farquhar J., Wing B. A. (2003). Earth Planetary Sci. Lett. 213:1–13.ADSCrossRefGoogle Scholar
  41. Farquhar J., Wing B. A., McKeegan K. D., Harris J. W., Cartigny P., Thiemens M. H. (2002). Science 298:2369–2372.ADSCrossRefGoogle Scholar
  42. Foriel J., Philippot P., Rey P., Somogyi A., Banks D., Menez B. (2004). Earth Planetary Sci. Lett. 228:451–463.ADSCrossRefGoogle Scholar
  43. Frape S. K., Blyth A., Blomqvist R., McNutt R. H. (2003). In: Drever J. I. (eds), The Oceans and Marine Geochemistry. Treatise of Geochemistry. Elsevier-Pergamon, Oxford, pp. 541–580.Google Scholar
  44. Fritz P., Frape S. K. (eds) (1987). Saline Water and Gases in Crystalline Rocks. GAC Special Paper, 33. Geological Association of Canada, Ottawa, 259 pp.Google Scholar
  45. Gladman B., Dones L., Levison H. F., Burns J. A. (2005). Astrobiology 5(4):483–496.ADSCrossRefGoogle Scholar
  46. Glass, B. P. and Burns, C. A.: 1988, Proc. Lunar Planetary Sci. Conf., 455–458Google Scholar
  47. Glikson A. Y. (1999). Geology 27(5):387–390.CrossRefMathSciNetADSGoogle Scholar
  48. Glikson A. Y. (2001). J. Geodynamics 32(1–2):205–229.CrossRefADSGoogle Scholar
  49. Gomes R., Levison H. F., Tsiganis K., Morbidelli A. (2005). Nature 435:466–469.ADSCrossRefGoogle Scholar
  50. Gordon R. M., Martin J. H., Knauer G. A. (1982). Nature 299:611–612.ADSCrossRefGoogle Scholar
  51. Gorman B. E., Pearce T. H., Birkett T. C. (1978). Precambrian Res. 6:23–41.CrossRefGoogle Scholar
  52. Gough D. O. (1981). Solar Phys. 74:21–34.ADSCrossRefGoogle Scholar
  53. Graedel T. E., Keene W. C. (1996). Pure Appl. Chem. 68:1689–1697.Google Scholar
  54. Gutscher M.-A., Maury F., Eissen J.-P., Bourdon E. (2000). Geology 28(6):535–538.CrossRefADSGoogle Scholar
  55. Gutzmer J., Banks D., Lüders V., Hoefs J., Beukes N. J., von Bezing K. L. (2003). Chem. Geol. 201:37–53CrossRefGoogle Scholar
  56. Gutzmer J., Pack A., Luders V., Wilkinson J.-J., Beukes N. J., van Niekerk H. S. (2001). Contrib. Mineral. Petrol. 142:27–42.ADSGoogle Scholar
  57. Hanna J. L., Bekker A., Stein H. J. J., Markey R. J., Holland H. D. (2004). Earth Planetary Sci. Lett. 225:43–52.ADSCrossRefGoogle Scholar
  58. Hassler S. W., Robey H. F., Simonson B. (2000). Sedimentary Geol. 135:283–294.CrossRefADSGoogle Scholar
  59. Hassler, S. W. and Simonson, B. M.: 2001, J. Geol. 109Google Scholar
  60. Hilburn I. A. L. J., Kirschvink J. L. E. T., Tada R., Hamano Y., Yamamoto S. (2005). Earth Planetary Sci. Lett. 232(3–4):315–332ADSCrossRefGoogle Scholar
  61. Hoffman P. F., Kaufman A. J., Halverson G. P., Schrag D. P. (1998). Science 281:1342–1346.ADSCrossRefGoogle Scholar
  62. Holland H. D. (1984). The Chemical Evolution of the Atmosphere and Oceans. Princeton University Press, Princeton, 582 pp.Google Scholar
  63. Holland, H. D. 1994, in S. Bengston (ed.), Early Life on Earth. Columbia University Press, New York, pp. 237–244.Google Scholar
  64. Holland, H. D. (1999). The Geochem. News 100:20–22.Google Scholar
  65. Holland H. D. (2002). Geochimica et Cosmochimica Acta 66(21):3811–3826ADSCrossRefGoogle Scholar
  66. Holland H. D. (2003). In: Holland H. D., Turekian K. K. (eds), The Oceans and Marine Geochemistry. Treatise of Geochemistry. Elsevier-Pergamon, Oxford, pp. 583–625.Google Scholar
  67. Horibe Y., Endo K., Tsubota H. (1974). Earth and Planetary Science Letters 23(1):136–140.ADSCrossRefGoogle Scholar
  68. Isley A. E. (1995). J. Geol. 103:169–185.CrossRefADSGoogle Scholar
  69. Johnson N. M., Fegley B. Jr. (2002). Adv. Space Res. 29:2333–241.CrossRefGoogle Scholar
  70. Kamber B. S., Webb G. E. (2001). Geochimica et Cosmochimica Acta 65:2509–2525.ADSCrossRefGoogle Scholar
  71. Karhu J. A., Holland H. D. (1996). Geology 24:867–870.CrossRefADSGoogle Scholar
  72. Kasting J. F. (1993). Earth’s Early Atmosphere. 259:920–926.Google Scholar
  73. Kasting J. F. (2005). Precambrian Res. 137:119–129.CrossRefGoogle Scholar
  74. Kasting J. F., Eggler D. H., Raeburn S. P. (1993). J. Geol. 101:245–257.CrossRefADSGoogle Scholar
  75. Knauth L. P. (1998). Nature 395:554–555.ADSCrossRefGoogle Scholar
  76. Knauth L. P. (2005). Palaeogeogr. Palaeoclimatol. Palaeoecol. 219(1–2):53–69.CrossRefGoogle Scholar
  77. Knauth L. P., Lowe D. R. (1978). J. Geol. 41:209–222Google Scholar
  78. Knauth L. P., Lowe D. R. (2003). Geol. Soc. Am. Bull. 115(5):566–580.CrossRefGoogle Scholar
  79. Knoll A. H. (2003). Deobiology 1:3–14.MATHCrossRefADSGoogle Scholar
  80. Konkauser K. O., Hamade T., Morris R. C., Ferris G. F., Southam G., Canfield D. E. (2002). Geology 30:1079–1082CrossRefADSGoogle Scholar
  81. Kopp R. E., Kirschvink J. L., Hilburn I. A., Nash C. Z. (2005). Proc. Nat. Acad. Sci. 102:11131–11136ADSCrossRefGoogle Scholar
  82. Krauskopf K. B., Bird D. K. (1995). Introduction to Geochemistry. McGraw-Hill, New York, 647 ppGoogle Scholar
  83. Kress M. E., McKay, C. P. (2004). Icarus, 168(2):475–483.ADSCrossRefGoogle Scholar
  84. Kyte F. T., Lowe D. R., Byerly G. R. (2003). Geology 31:283–286.CrossRefADSGoogle Scholar
  85. Kyte F. T., Bostwick J. A. (1995). Earth Planetary Sci. Lett. 132(1–4):113–127.ADSCrossRefGoogle Scholar
  86. Li Z.-X. A., Lee C.-T. A. (2004). Earth Planetary Sci. Lett. 228:483–493.ADSCrossRefGoogle Scholar
  87. Libourel G., Marty B., Humbert F. (2003). Geochimica et Cosmochimica Acta 67:4123–4135ADSCrossRefGoogle Scholar
  88. Lowe D. R., Byerly G. R. (2003). Geology 31(10):909–912CrossRefADSGoogle Scholar
  89. Lowe D. R., Byerly G. R., Kyte F. T., Shukolyukov A., Asaro F., Krull A. (2003). Astrobiology 3(1):7–48.ADSCrossRefGoogle Scholar
  90. Maher K. A., Stevenson D. J. (1988). Nature 331:612–614.ADSCrossRefGoogle Scholar
  91. Martin H. (1986). Geology 14:753–756CrossRefADSGoogle Scholar
  92. Martin H. (1999). Lithos 46(3):411–429CrossRefADSGoogle Scholar
  93. Martin H., Moyen J.-F. (2002). Geology 30(4):319–322CrossRefADSGoogle Scholar
  94. Martin H., Smithies R. H., Rapp R., Moyen J.-F., Champion D. (2005). Lithos 79(1–2):1–24CrossRefADSGoogle Scholar
  95. Marty B., Dauphas N. (2003). Earth Planetary Sci. Lett. 206:397–410ADSCrossRefGoogle Scholar
  96. McCulloch M. T., Bennet V. C. (1993). Lithos 30:237–255.CrossRefADSGoogle Scholar
  97. McCulloch M. T., Bennett V. C. (1994). Geochimica and Cosmochimica Acta 58:4717–4738.ADSCrossRefGoogle Scholar
  98. Melezhik V. A., Fallick A. E., Hanski E. J., Kump L. R., Lepland A., Prav A. R., Strauss H. (2005). Geol. Soc. Am. Today 15(11):4–11.Google Scholar
  99. Mojzsis S. J., Coath C. D., Greenwood J. P., McKeegan K. D., Harrison T. M. (2003). Geochimica et Cosmochimica Acta 67:1635–1658.ADSCrossRefGoogle Scholar
  100. Montanari A., Koeberl C. (2000). Impact Stratigraphy Lecture Notes in Earth Sciences, 93. Springer Verlag, Berlin, 364 pp.Google Scholar
  101. Moyen J.-F., Jayananda M., Nédelec A., Martin H., Mahabaleswar B., Auvray B. (2003). J. Geol. Soc. India 62:753–758Google Scholar
  102. Moyen J.-F., Martin H., Jayananda M. (1997). Compte Rendus de l’Académie des Sciences de Paris 325:659–664.ADSGoogle Scholar
  103. Navarro-Gonzalez R., McKay C. P., Nna Mvondo D. (2001). Nature 412:61–64ADSCrossRefGoogle Scholar
  104. Nhleko, N.: 2004, The Pongola Supergroup in Swaziland. Rand Afrikaans UniversityGoogle Scholar
  105. Nijman W., de Bruijne K. C. H., Valkering M. E. (1998). Precambrian Res. 88(1–4):25–52.CrossRefGoogle Scholar
  106. Nisbet E. G., Cheadle M. J., Arndt N. T., Bickle M. J. (1993). Lithos 30:291–307CrossRefADSGoogle Scholar
  107. Nisbet E. G., Fowler C. M. R. (2003). In: Schlesinger W. H. (eds), Biogeochemistry. Treatise of Geochemistry. Elsevier-Pergamon, Oxford, pp. 1–61.Google Scholar
  108. Nisbet E. G., Sleep N. H. (2001). Nature 409:1083–1091.ADSCrossRefGoogle Scholar
  109. Oberbeck V., Fogelman G. (1989). Nature 339:434.ADSCrossRefGoogle Scholar
  110. Pavlov, A. A., Hurtgen, M. T., Kasting, J. F. and Arthur, M. A.: 2003, Geology 31, 87–90Google Scholar
  111. Pavlov A. A., Kasting J. F. (2002). Astrobiology 2(1):27–41.ADSCrossRefGoogle Scholar
  112. Pavlov A. A., Kasting J. F., Brown L. L., Rages K. A., Freedman R. (2000). J. Geophys. Res. 105:11981–11990.ADSCrossRefGoogle Scholar
  113. Peltier W. R., Butler S., Solheim L. P. (1997). In: Grossley D. J. (eds), Earth’s Deep Interior. Gordon and Breach, Amsterdam, pp. 405–430Google Scholar
  114. Pinti D. L. (2005). In: Gargaud M., Barbier B., Martin H., Reisse J. (eds), Lectures in Astrobiology. Advances in Astrobiology and Biogeophysics. Springer-Verlag, Berlin, pp. 83–107.Google Scholar
  115. Pinti D. L., Hashizume K., Matsuda J. (2001). Geochimica et Cosmochimica Acta 65(14):2301–2315.ADSCrossRefGoogle Scholar
  116. Pinti, D. L., Hashizume, K., Philippot, P., Foriel, J. and Rey, P.: 2003, Geochimica et Cosmochimica Acta, A287Google Scholar
  117. Rapp R. P., Shimizu N., Norman M. D. (2003). Nature 425:605–609.ADSCrossRefGoogle Scholar
  118. Rapp R. P., Shimizu N., Norman M. D., Applegate G. S. (1999). Chem. Geol. 160:335–356CrossRefGoogle Scholar
  119. Rasmussen B., Koeberl C. (2004). Geology 32:1029–1032CrossRefADSGoogle Scholar
  120. Ribas I., Guinan E. F., Gudel M., Audard M. (2005). The Astrophis J. 622(1):680–694.ADSCrossRefGoogle Scholar
  121. Robin E., Bonté P., Froget L., Jéhanno C., Rocchia R. (1992). Earth and Planetary Sci. Lett. 108:181–190ADSCrossRefGoogle Scholar
  122. Roedder E. (1984). Fluid Inclusions. Rewiews in Mineralogy, 12. Mineralogical Society of America, Washington, D.C. 646 ppGoogle Scholar
  123. Rosing M. T. (1999). Science 283:674–676.ADSCrossRefGoogle Scholar
  124. Rosing M. T., Frei R. (2004). Earth Planetary Sci. Lett. 217:237–244.ADSCrossRefGoogle Scholar
  125. Rouxel O. J., Bekker A., Edwards K. J. (2005). Science 307:1088–1091ADSCrossRefGoogle Scholar
  126. Rye R., Holland H. D. (1998). Am. J. Sci. 298:621–672.CrossRefGoogle Scholar
  127. Sagan C., Mullen G. (1972). Science 177:52–56.ADSCrossRefGoogle Scholar
  128. Samaniego P., Martin H., Robin C., Monzier M. (2002). Geology 30(11):967–970.CrossRefADSGoogle Scholar
  129. Samaniego, P., Martin, H., Robin, C., Monzier, M. and Cotten, J.: 2005, J. Petrol. 46, 2225–2252Google Scholar
  130. Selsis, F.: 2000, Evolution of the atmosphere of terrestrial planets. From early Earth atmosphere to extrasolar planets. Ph. D. Thesis, University of BordeauxGoogle Scholar
  131. Selsis, F.: 2002, Occurrence and detectability of O2-rich atmosphere in circumstellar “habitable zones”. ASP 269: The Evolving Sun and its Influence on Planetary EnvironmentsGoogle Scholar
  132. Selsis F. (2004). The Prebiotic Atmosphere of the Earth., Astrobiology, Future Perspective. Astrophysics and Space Science Library, KluwerGoogle Scholar
  133. Schrag, D. P., Berner, R. A., Hoffman, P. F. and Halverson, G. P.: 2002. Geochem. Geophys. Geosyst., 3(6), doi: 10.1029/2001GC000219Google Scholar
  134. Shen Y., Buick R. (2004). Earth-Sci. Rev. 64(3–4):243–272.ADSCrossRefGoogle Scholar
  135. Shen, Y., Pinti, D. L. and Hahsizume, K.: 2006, in K. Benn, J.-C. Mareschal and K. Condie (eds.), Archean Geodynamics and Environments. AGU Geophysical Monograph, American Geophysical Union, Washington, DC, Vol 164, pp. 305–320Google Scholar
  136. Shirey S. B., Hanson G. N. (1984). Nature 310: 222–224.ADSCrossRefGoogle Scholar
  137. Shukolyukov, A., Castillo, P. and Simonson, B. W. L. G., 2002. Chromium in Late Archean spherule layers from Hamersley basin, Western Australia; isotopic evidence for extraterrestrial component, Lunar and Planetary Science Conference, Houston, Texas, pp. 1369 (abstract)Google Scholar
  138. Shukolyukov A., Kyte F. T., Lugmair G. W., Lowe D. R., Byerly G. R. (2000). In: Gilmour I., Koeberl C. (eds), Impacts and the early Earth. Springer, Berlin, pp. 99–115.CrossRefGoogle Scholar
  139. Simonson B. (2003). Astrobiology 3(1):49–65.ADSCrossRefGoogle Scholar
  140. Simonson, B., Hassler, S. W., Smit, J. and Summer, D.: 2004, How Many Late Archean Impacts are Recorded in the Hamersley Basin of Western Australia, Lunar and Planetary Science, Houston Texas, pp. CD-ROM 1718 [Abstract]Google Scholar
  141. Simonson B. M. (1992). Geol. Soc. Am. Bull. 104:829–839CrossRefGoogle Scholar
  142. Simonson B. M., Glass B. P. (2004). Ann. Rev. Earth Planet Sci. 32:329–361ADSCrossRefGoogle Scholar
  143. Simonson B. M., Harnik P. (2000). Geology 28(11):975–978CrossRefADSGoogle Scholar
  144. Simonson, B. M., Hassler, S. W. and Beukes, N. J.: 1999, Late Archean impact spherule layer in South Africa that may correlate with a Western Australian layer. Geological Society of America, Special paper 339Google Scholar
  145. Sleep B. E., McClure P. D. (2001). J. Contam. Hydrol. 50(1–2):21–40CrossRefADSGoogle Scholar
  146. Sleep N. H., Meibom A., Fridriksson T., Coleman R. G., Bird D. K., (2004). Proc. Nat. Acad. Sci. 101(35):12818–12823ADSCrossRefGoogle Scholar
  147. Sleep N. H., Zahnle K. (2001a). J. Geophys. Res. Planets 106(E1):1373–1399ADSCrossRefGoogle Scholar
  148. Sleep N. H., Zahnle K., Neuhoff P. S. (2001). Proc. Nat. Acad. Sci. USA 98(7):3666–3672ADSCrossRefGoogle Scholar
  149. Sleep N. H., Zahnle K. J. (2001b). J.Geophys. Res. 106:1373–1400.ADSCrossRefGoogle Scholar
  150. Smit J. (1999). Ann. Rev. Earth Planetary Sci. 27:75–113.ADSCrossRefGoogle Scholar
  151. Smit J., Alvarez W., Montanari A., Swinburne N., Van Kempen T. M., Klaver G. T., Lustenhouwer W. J. (1992). Proc. Lunar Planetary Sci. 22:87–100ADSGoogle Scholar
  152. Smithies R. H. (2000). Earth Planetary Sci. Lett. 182:115–125ADSCrossRefGoogle Scholar
  153. Stein M., Hofmann A. W. (1994). Nature 372:63–68.ADSCrossRefGoogle Scholar
  154. Svetov S. A., Svetova A. I., Huhma H. (2001). Geochem. Int. 39:24–38.Google Scholar
  155. Tian F., Toon O. B., Pavlov A. A., De Sterck H. (2005). Science 308:1014–1017.ADSCrossRefGoogle Scholar
  156. Ueno Y., Yoshioka H., Maruyama S., Isozaki Y. (2004). Geochimica et Cosmochimica Acta 68(3):573–589.ADSCrossRefGoogle Scholar
  157. Van Kranendonk, M. J., Hickman, A. H., Williams, I. R. and Nijman, W.: 2001, Archaean geology of the East Pilbara granite-greenstone terrane, Western Australia – A field guide, Geological Survey of Western Australia, PerthGoogle Scholar
  158. Veizer J., Compston W. (1976). Geochimica et Cosmochimica Acta 40:905–914ADSCrossRefGoogle Scholar
  159. Veizer J., Hoefs J., Ridler R. H., Jensen L. S., Lowe D. R. (1989). Geochimica et Cosmochimica Acta 53:845–857.ADSCrossRefGoogle Scholar
  160. von Damm K. L., Oosting S. E., Kozlowski R., Buttermore L. G., Colodner D. C., Edmonds H. N., Edmond J. M., Grebmeir J. M. (1995). Nature 375:47–50.ADSCrossRefGoogle Scholar
  161. Walker J. C. G., Hays P. B., Kasting J. F. (1981). J. Geophys. Res. 86: 9776–9782.ADSCrossRefGoogle Scholar
  162. Wallace M. W., Gostin V. A., Keays R. R. (1990). Geology 18(2):132–135CrossRefADSGoogle Scholar
  163. Weiershauser L., Spooner E. T. C. (2005). Precambrian Res. 138(1–2):89–123CrossRefGoogle Scholar
  164. Weiss R. F. (1970). Deep-Sea Res. 17:721–735.Google Scholar
  165. Wells L. E., Armstrong J. C., Gonzalez G. (2003). Icarus 162:38–46ADSCrossRefGoogle Scholar
  166. Young G. M., von Brunn V., Gold D. J. C., Minter W. E. L. (1998). J. Geol. 106:523–538.CrossRefADSGoogle Scholar
  167. Zahnle K., Sleep N. H. (2002). In: Fowler C. M. R., Ebinger C. J., Hawkesworth C. J. (eds), The Early Earth: Physical, Chemical and Biological Development. Geological Society, London, pp. 231–257.Google Scholar
  168. Zegers T. E., de Wit M. J., Dann J., White S. H. (1998). Terra Nova 10:250–259.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • Hervé Martin
    • 1
  • Philippe Claeys
    • 2
  • Muriel Gargaud
    • 3
  • Daniele Pinti
    • 4
  • Franck Selsis
    • 5
  1. 1.Laboratoire Magmas et VolcansUniversité Blaise PascalClermont-FerrandFrance
  2. 2.DGLG-WEVrije Universiteit BrusselBrusselsBelgium
  3. 3.Observatoire Aquitain des Sciences de l’UniversUniversité Bordeaux1BordeauxFrance
  4. 4.GEOTOP-UQAM-McGillUniversité du Québec à MontréalQuebecCanada
  5. 5.Centre de Recherche Astronomique de Lyon and Ecole Normale Supérieure de LyonLyonFrance

Personalised recommendations