Earth, Moon, and Planets

, Volume 94, Issue 3–4, pp 177–183 | Cite as

The case for support of manned spaceflight as a platform for research on sarcopenia and osteopenia

  • Michael J. Rennie
  • Marco V. Narici


The United Kingdom government has decided to be part of the European Space Agency’s Aurora programme, but so far it has declared an intention only to participate in aspects of the programme which do not involve human space flight. Personally, we believe this to be a mistake, mainly because of the inherent limitations of robots, especially in unforeseen circumstances. However the arguments we make are different to this and are focussed mainly upon the benefits to earth based science, medicine, technology and education which would accrue from a manned space flight programme.


Human spaceflight microgravity osteopenia sarcopenia 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Albala J.S. (2001). Array-based proteomics: the latest chip challenge. Expert. Rev. Mol. Diagn. 1: 145–152CrossRefPubMedGoogle Scholar
  2. boonstra J. (1999). ‘Growth factor-induced signal transduction in adherent mammalian cells issensititve to gravity’. FASEB J. 13:S35–S42PubMedGoogle Scholar
  3. Chittur S.V. (2004). DNA microarrays: tools for the 21st Century. Comb. Chem. High Throughput. Screen. 7: 531–537PubMedGoogle Scholar
  4. Kozlovskaya I.B. and Grigorev A.I. (2004) ‘Russian system of countermeasures on board of the International Space Station: the first results’. Acta Astronaut. 55:233–237CrossRefPubMedADSGoogle Scholar
  5. Di Prampero P.E., Antonutto G. (1997). Cycling in space to simulate gravity. Int. J. Sports Med. 18: S324–S326PubMedGoogle Scholar
  6. Di Prampero P.E. (2000). Cycling on Earth, in space, on the Moon. Eur. J. Appl. Physiol. 82: 345–360CrossRefPubMedGoogle Scholar
  7. di Prampero P.E. and Narici M.V. (2003). ‘Muscles in microgravitiy: from fibres to human motion’. J. Biomech. 36:403–412CrossRefPubMedGoogle Scholar
  8. Morley J.E., Baumgartner R.N., Roubenoff R., Mayer J., Nair K.S. (2000). Sarcopenia. J Lab Clin. Med 137: 231–243CrossRefGoogle Scholar
  9. Peusner K.D. (2001) ‘Development of the gravity sensing system’. J. Neurosci. Res. 15:103–108CrossRefGoogle Scholar
  10. Reeves N.D., Maganaris C.N., Ferretti G., Narici M.V. (2005). Influence of 90-day simulated microgravity on human tendon mechanical properties and the effect of resistive countermeasures. J Appl. Physiol. 98: 2278 – 2286CrossRefPubMedGoogle Scholar
  11. Rittweger J., Frost H.M., Schiessl H., Oshima H., Alkner B., Tesch P., and Felsenberg D., (2005). ‘Muscle atrophy and bone loss after 90 days’ bed rest and the effects of flywheel resistive exercise and pamidronate: results from the LTBR study’. Bone 36:1019–1029CrossRefPubMedGoogle Scholar
  12. Semov S., Semova N., Lacelle C., Marcotte R., Petroulakis E., Proestou G., Wang E. (2002). Alterations in TNF- and IL-related gene expression in space-flown WI38 human fibroblasts. FASEB J. 16(8): 899–901PubMedGoogle Scholar
  13. Taylor W.E., Bhasin S., Lalani R., Datta A., Gonzalez-Cadavid N.F. (2002). Alteration of gene expression profiles in skeletal muscle of rats exposed to microgravity during a spaceflight. J. Gravit. Physiol. 9(2): 61–70PubMedGoogle Scholar
  14. Vandenburgh H., Chromiak J., Shansky J., Del T.M., Lemaire J. (1999). Space travel directly induces skeletal muscle atrophy. FASEB J. 13: 1031–1038PubMedGoogle Scholar
  15. Wakeham B., Sykes R., Williams P., and Garwood S.: 2003, Recommendations of the Microgravity Review Panel, (also available at∼ ∼iac/Microgravity_Report.pdf)
  16. Wilson J.W., Ramamurthy R., Porwollik S., McCelland M., Hammond T., Allen P., Ott C.M., Pierson D.L., Nickerson C.A. (2002). Microarray analysis identifies Salmonella genes belonging to the low-shear modelled microgravity regulon. Proc. Nat. Acad. Sci. USA 99(21): 13807–13812CrossRefPubMedADSGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  1. 1.University of Nottingham School of Biomedical Sciences, Division of Clinical PhysiologyGraduate Entry Medical School, Derby City General HospitalDerbyUK
  2. 2.Institute for Biophysical and Clinical Research into Human MovementManchester Metropolitan UniversityAlsagerUK

Personalised recommendations