Control Code Multiple Encryption Algorithm on Satellite-to-ground Communication

Abstract

The transmission security between ground station and satellite is challenging. Some existing multistep algorithms leave lots of loopholes for eavesdropping and attacking in satellite-to-ground communication. For high security, optical communication is a promising solution. In this paper, we propose a control code multiple encryption algorithm (CCMEA) for the single-photon-transmission between satellite and ground station. CCMEA can utilize the control code to respectively encrypt three cognitive optimization sections: loop iteration, polarization coding and order rearrangement, and simulation shows that CCMEA can realize one step transmission to decrease loopholes compared with multistep encryption algorithm. In addition, we design a security detection method by combining the decoy photon analysis and the quantum bit error rate (QBER) analysis. The numerical results show that CCMEA can reduce the security threshold by 27% compared with multistep encryption algorithm of BB84 scheme. Finally, for satellite-to-ground communication, we construct an analytic QBER model on CCMEA with four factors: quantum channel transmission rate, single-photon acquisition probability, measurement factor and data filtering factor. The result demonstrates the effectiveness of CCMEA on satellite-to-ground communication.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

References

  1. 1.

    Jia M, Liu X, Gu X, Guo Q (2017) Joint cooperative spectrum sensing and channel selection optimization for satellite communication systems based on cognitive radio. Int J Satell Commun Netw 35(2):139

    Google Scholar 

  2. 2.

    Chen Y, Zhao N, Ding Z, Alouini M (2018) Multiple UAVs as Relays: Multi-Hop Single Link Versus Multiple Dual-Hop Links. IEEE Trans Wirel Commun 17(9):6348

    Google Scholar 

  3. 3.

    Zhao N, Cheng F, Yu FR, Tang J, Chen Y, Gui G, Sari H (2018) Caching UAV Assisted Secure Transmission in Hyper-Dense Networks Based on Interference Alignment. IEEE Trans Commun 66(5):2281

    Google Scholar 

  4. 4.

    Cheng F, Zhang S, Li Z, Chen Y, Zhao N, Yu FR, Leung VCM (2018) UAV Trajectory Optimization for Data Offloading at the Edge of Multiple Cells. IEEE Trans Veh Technol 67(7):6732

    Google Scholar 

  5. 5.

    Jia M, Gu X, Guo Q, Xiang W, Zhang N (2016) Broadband Hybrid Satellite-Terrestrial Communication Systems Based on Cognitive Radio toward 5G. IEEE Wirel Commun 23(6):96

    Google Scholar 

  6. 6.

    Zhao Y, Xie L, Chen H, Wang K (2017) Ergodic Channel Capacity Analysis of Downlink in the Hybrid Satellite-Terrestrial Cooperative System. Wirel Pers Commun 96(3):3799

    Google Scholar 

  7. 7.

    Li M, Hong Y, Zeng C, Song Y, Zhang X (2018) Investigation on the UAV-to-satellite optical communication systems. IEEE J Select Areas Commun 36(99):1

  8. 8.

    Cao Y, Zhao N, Yu FR, Jin M, Chen Y, Tang J, Leung VCM (2018) Optimization or Alignment: Secure Primary Transmission Assisted by Secondary Networks. IEEE J Sel Areas Commun 36(4):905

    Google Scholar 

  9. 9.

    Deng FG, Li XH, Li CY, Zhou P, Zhou HY (2006) Quantum secure direct communication network with Einstein Podolsky Rosen pairs. Phys Lett A 359(5):359

    MATH  Google Scholar 

  10. 10.

    Deng FG, Gui LL, Liu XS (2003) Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pair block. Phys Rev A 68(4):113

    Google Scholar 

  11. 11.

    Salih H, Li ZH, Al-Amri M, Zubairy MS (2013) Protocol for direct counterfactual quantum communication. Phys Rev Lett 110(17):170502

    Google Scholar 

  12. 12.

    Gao F, Qin SJ, Wen QY, Zhu FC (2010) Cryptanalysis of multiparty controlled quantum secure direct communication using Greenberger Horne Zeilinger state. Opt Commun 283(1):192

    Google Scholar 

  13. 13.

    Patwardhan S, Moulick SR, Panigrahi PK (2016) Efficient Controlled Quantum Secure Direct Communication Protocols. Int J Theor Phys 55(7):1

    MathSciNet  MATH  Google Scholar 

  14. 14.

    Liu WJ, Chen HW, Liu JF, Liu ZH (2009) Three-dimension single photon quantum secure direct communication based on mutual authentication. J Cent South Univ 40(1):309

    Google Scholar 

  15. 15.

    Zang P, Tulin YI, Song RY, Jiang Y, School HN (2017) Controlled Teleportation of 3 Particle GHZ State via 2 EPR Pairs. Journal of Anhui Normal University 40(3):242

    Google Scholar 

  16. 16.

    Zhao X, Li J, Niu P, Ma H, Ruan D (2017) Two-step quantum secure direct communication scheme with frequency coding. Chin Phys B 26(3):231

    Google Scholar 

  17. 17.

    Tan X, Zhang X, Liang C (2014) Multi-party Quantum Secure Direct Communication. In: International Conference on P2P, pp 251–255

  18. 18.

    Li HW, Xu ZM, Yin ZQ (2018) Quantum Key Distribution in the Presence of the Intercept-Resend with Faked States Attack. Quantum Inf Process 17(10):257

    Google Scholar 

  19. 19.

    Howard M (2015) . Phys Rev A 91(4):042103

    Google Scholar 

  20. 20.

    Behzadi N, Ahansaz B (2017) Effects of Oscillatory Deformations on the Coherent and Incoherent Quantum Transport. Int J Theor Phys 56(11):3441

    MathSciNet  MATH  Google Scholar 

  21. 21.

    Yang YG, Sun SJ, Zhao QQ (2015) Trojan-horse attacks on quantum key distribution with classical Bob. Quantum Inf Process 14(2):681

    MathSciNet  MATH  Google Scholar 

  22. 22.

    Vinay SE, Kok P (2018) Extended analysis of the Trojan-horse attack in quantum key distribution. Phys Rev A 97(4):042335

    Google Scholar 

  23. 23.

    Sajeed S, Minshull C, Jain N, Makarov V (2017) Invisible Trojan-horse attack. Sci Rep 7(1):8403

    Google Scholar 

  24. 24.

    Hong-Xin LI, Chi YG, Han Y, Yan B, Wang W (2018) . Analysis on Photon-number-splitting Attack Against Decoy-state Quantum Key Distribution Schemes. Journal of Cryptologic Research 5(1):1

    Google Scholar 

  25. 25.

    Kakkar A, Navarro JR, Schatz R, Pang X, Ozolins O, Nordwall F, Zibar D, Jacobsen G, Popov S (2017) Influence of lasers with non-white frequency noise on the design of coherent optical links. In: 2017 Optical Fiber Communications Conference and Exhibition, pp. 1–3

  26. 26.

    Cao J, Zhao X, Liu W, Gu H (2017) Performance analysis of a coherent free space optical communication system based on experiment. Opt Express 25(13):15299

    Google Scholar 

  27. 27.

    Deng F, Long G (2004) Secure direct communication with a quantum one-time pad. Physics 69(5):521

    Google Scholar 

  28. 28.

    Wang C, Deng FG, Li YS, Liu XS, Long GL (2005) Quantum secure direct communication with high-dimension quantum superdense coding. Phys Rev A 71(4):44305

    Google Scholar 

  29. 29.

    Wang C, Deng FG, Long GL (2005) Multi-step quantum secure direct communication using multi-particle Green-Horne-Zeilinger state. Opt Commun 253(1):15

    Google Scholar 

  30. 30.

    Kielpinski D, Monroe C, Wineland DJ (2002) Architecture for a large-scale ion-trap quantum computer. Nature 417(6890):709

    Google Scholar 

  31. 31.

    Birnbaum KM, Boca A, Miller R, Boozer AD, Northup TE, Kimble HJ (2005) Photon blockade in an optical cavity with one trapped atom. Nature 436(7047):87

    Google Scholar 

  32. 32.

    Jia M, Liu X, Yin Z, Guo Q, Gu X (2017) Joint cooperative spectrum sensing and spectrum opportunity for satellite cluster communication networks. Ad Hoc Netw 58(C):231

    Google Scholar 

  33. 33.

    Hu JY, Yu B, Jing MY, Xiao LT, Jia ST, Qin GQ, Long GL (2016) Experimental quantum secure direct communication with single photons. Light Science & Applications 5(9):e16144

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 61601145, 61471142, 61571167, 61871157), the Fund of Aeronautics Science of China (Grant No. ASFC-2017ZC77004), SAST fund (Grant No. SAST2017050) and HIRP fund (Grant No. HO2017050001C9).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Zhutian Yang.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Liu, J., Yang, Z., Wu, Z. et al. Control Code Multiple Encryption Algorithm on Satellite-to-ground Communication. Mobile Netw Appl 24, 1955–1974 (2019). https://doi.org/10.1007/s11036-019-01338-z

Download citation

Keywords

  • Control code multiple encryption algorithm (CCMEA)
  • Quantum bit error rate
  • Security detection
  • Satellite communication