Healing Coverage Holes for Big Data Collection in Large-Scale Wireless Sensor Networks

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

The quality of service is severely degraded by coverage holes in wireless sensor networks. This paper focuses on the coverage hole healing (CHH) problem for big data collection in a large-scale wireless sensor network (LS-WSN) where the LS-WSN containing both static sensors and mobile sensors with the topology control of LEACH algorithm. Meanwhile, the data volume transmitted by each sensor node may be inconsistent. Specifically, the target of the CHH problem is to find an optimal subset of mobile nodes from all mobile nodes while maximizing the transmission times (TT) that all dispatched mobile nodes can transmit in their lifetime. Hence, from the data-centric perspective, we propose a greedy healing algorithm (GHA) via the greedy-based heuristic strategy with low computational complexity to solve this CHH problem. Simulation results show that the proposed GHA can efficiently heal the coverage holes which significantly prolongs the network lifetime and observably enhances the quality of service (QoS) of WSNs while increasing the TT, transmitted data volume (TDV) and average residual energy of all dispatched mobile nodes.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. 1.

    Oliveira LML, Rodrigues JJPC (2011) Wireless sensor networks: a survey on environmental monitoring. J Commun 6(2):143–151

    Article  Google Scholar 

  2. 2.

    Wang B (2011) Coverage problems in sensor networks: a survey. ACM Comput Surv 43(4):32

    Article  Google Scholar 

  3. 3.

    Arthur WB (2011) The second economy, McKinsey Quart

  4. 4.

    Liu Y, He Y, Li M, Wang J, Liu K, Li X (2013) Does wireless sensor network scale? A measurement study on green orbs. IEEE Trans Parallel Distrib Syst 24(10):1983–1993

    Article  Google Scholar 

  5. 5.

    Nasipuri A, Cox R, Conrad J, Van Der Zel L, Rodriguez B, and McKosky R (2010) Design considerations for a large-scale wireless sensor network for substation monitoring, in Proc. 5th IEEE Int. Workshop Pract. Issues Build. Sens. Netw. Appl., pp. 866–873

  6. 6.

    Jia M, Yin Z, Guo Q, Liu G, Gu X (2018) Toward improved offloading efficiency of data transmission in the IoT-cloud by leveraging secure truncating OFDM. IEEE Internet of Things J 99:1–8

    Google Scholar 

  7. 7.

    Jia M, Yin Z, Guo Q, Liu G, Gu X (2018) Downlink design for spectrum efficient IoT network. IEEE Int of Things Journal 5(5):3397–3404

    Article  Google Scholar 

  8. 8.

    Jia M, Liu X, Gu X, Guo Q (2017) Joint cooperative spectrum sensing and channel selection optimization for satellite communication systems based on cognitive radio. Int J Satellite Commun Netw 35(2):139–150

    Article  Google Scholar 

  9. 9.

    Jia M, Gu X, Guo Q, Xiang W, Zhang N (2016) Broadband hybrid satellite-terre- strial communication systems based on cognitive radio towards 5G. IEEE Wirel Commun 23(6):96–106

    Article  Google Scholar 

  10. 10.

    Jia M, Liu X, Yin Z, Guo Q, Gu X (2016) Joint cooperative spectrum sensing and spectrum opportunity for satellite cluster communication networks. Ad Hoc Net 58:231–238

    Article  Google Scholar 

  11. 11.

    Jia M, Li D, Yin Z, Guo Q, Gu X (2018) High spectral efficiency secure communications with non-orthogonal physical and multiple access layers. IEEE Internet of Things J. 99:1–8

    Google Scholar 

  12. 12.

    Cao X, Liu L, Cheng Y, Shen X (2018) Towards energy-efficient wireless networking in the big data era: a survey. IEEE Commun Surveys & Tutorials 20(1):303–332, First Quarter

    Article  Google Scholar 

  13. 13.

    Takaishi D, Nishiyama H, Kato N, Miura R (2014) Toward energy efficient big data gathering in densely distributed sensor networks. IEEE Trans Emerg Top Comput 2(3):388–397

    Article  Google Scholar 

  14. 14.

    Wu M, Tan L, Xiong N (2015) A structure fidelity approach for big data collection in wireless sensor networks. Sensors 15:248–273

    Article  Google Scholar 

  15. 15.

    Zhu J, Yin X, Bai J, Wang Y (2016) Mobility-assisted big data collecting in wireless sensor networks. Int J Distrib Sens Netw 12(8):18

    Google Scholar 

  16. 16.

    Ding X, Tian Y, Yu Y (2016) A real-time big data gathering algorithm based on indoor wireless sensor networks for risk analysis of industrial operations. IEEE Trans. Ind. Inform. 12(3):1232–1242

    Article  Google Scholar 

  17. 17.

    Rani S, Ahmed SH, Talwar R, Malhotra J (2017) Can sensors collect big data? An energy-efficient big data gathering algorithm for a WSN. IEEE Trans Ind Inform 13(4):1961–1968

    Article  Google Scholar 

  18. 18.

    Din S, Ahmed A, Paul A, Rathore MMU, Jeon G (2017) A cluster-based data fusion technique to analyze big data in wireless multi-sensor system. IEEE Access 5:5069–5083

    Article  Google Scholar 

  19. 19.

    Ang KL, Seng JKP, Zungeru AM (2018) Optimizing energy consumption for big data collection in large-scale wireless sensor networks with mobile collectors. IEEE Syst J 12(1):616–626

    Article  Google Scholar 

  20. 20.

    Senouci MR, Mellouk A, Assnoune K (2014) Localized movement-assisted sensor deployment algorithm for hole detection and healing. IEEE Trans. Parallel Distrib. Syst. 25(5):1267–1277

    Article  Google Scholar 

  21. 21.

    Deng X, Tang Z, Yang LT, Lin M, Wang B (2018) Confident information coverage hole healing in hybrid industrial wireless sensor networks. IEEE Trans. Ind. Informat. 14(5):2220–2229

    Article  Google Scholar 

  22. 22.

    Qiu C, Shen H, and Chen K (2015) An energy-efficient and distributed cooperation mechanism for k-coverage hole detection and healing in WSNs, in Proc. IEEE 12th Int. Conf. Mobile Ad Hoc Sens. Syst., Oct. pp. 73–81

  23. 23.

    Han G, Liu L, Jiang J, Shu L, Hancke G (2017) Analysis of energy-efficient connected target coverage algorithms for industrial wireless sensor networks. IEEE Trans Ind Informat 13(1):135–143

    Article  Google Scholar 

  24. 24.

    Latif K, Javaid N, Ahmad A, Khan ZA, Alrajeh N, Khan MI (2016) On energy hole and coverage hole avoidance in underwater wireless sensor networks. IEEE Sensors J 16(11):4431–4442

    Article  Google Scholar 

  25. 25.

    Wang YC, Hu CC, Tseng YC (2008) Efficient placement and dispatch of sensors in a wireless sensor network. IEEE Trans Mobile Comput 7(2):262–274

    Article  Google Scholar 

  26. 26.

    Yan F, Vergne A, Martins P, Decreusefond L (2015) Homology-based distributed coverage hole detection in wireless sensor networks. IEEE/ACM Trans Netw 23(6):1705–1718

    Article  Google Scholar 

  27. 27.

    Sahoo PK, Liao W (2015) HORA: a distributed coverage hole repair algorithm for wireless sensor networks. IEEE Trans Mob Comput 14(7):1397–1410

    Article  Google Scholar 

  28. 28.

    Abolhasan M, Maali Y, Rafiei A, Ni W (2016) Distributed hybrid coverage hole recovery in wireless sensor networks. IEEE Sensors J 16(23):8640–8648

    Google Scholar 

  29. 29.

    Li W, Wu Y (2016) Tree-based coverage hole detection and healing method in wireless sensor networks. Comput Netw 103(24):33–43

    Article  Google Scholar 

  30. 30.

    Liu B, Ren F, Shen J, Chen H (2010) Advanced self-correcting time synchronization in wireless sensor networks. IEEE Commun Lett 14(4):309–311

    Article  Google Scholar 

  31. 31.

    Zhang W, Yin Q, Chen H, Gao F, Ansari N (2013) Distributed angle estimation for localization in wireless sensor networks. IEEE Trans Wirel Commun 12(2):527–537

    Article  Google Scholar 

  32. 32.

    Liu B, Chen H, Zhong Z, Poor HV (2010) Asymmetrical round trip based synchronization-free localization in large-scale underwater sensor networks. IEEE Trans Wirel Commun 9(11):3532–3542

    Article  Google Scholar 

  33. 33.

    Wang G, Chen H, Li Y, Jin M (2012) On received-signal-strength based localization with unknown transmit power and path loss exponent. IEEE Wirel Commun Lett 1(5):536–539

    Article  Google Scholar 

  34. 34.

    Chen H, Liu B, Huang P, Liang J, Gu Y (2012) Mobility-assisted node localization based on TOA measurements without time synchronization in wireless sensor networks. ACM Mob Net App 17(1):90–99

    Article  Google Scholar 

  35. 35.

    Chen L, Chen W, Wang B, Zhang X, Chen H, Yang D (2011) System-level simulation methodology and platform for mobile cellular systems. IEEE Commun Mag 49(7):148–155

    Article  Google Scholar 

  36. 36.

    Wang G, Chen H (2011) An importance sampling method for TDOA-based source localization. IEEE Trans Wirel Commun 10(5):1560–1568

    Article  Google Scholar 

  37. 37.

    Chen H, Gao F, Marins MHT, Huang P, Liang J (2013) Accurate and efficient node localization for mobile sensor networks. ACM Mob. Net. App. 18(1):141–147

    Article  Google Scholar 

  38. 38.

    Chen H, Wang GWZ, So HC, Poor HV (2011) Non-line-of-sight node localization based on semi-definite programming in wireless sensor networks. IEEE Trans Wirel Commun 11(1):108–116

    Article  Google Scholar 

  39. 39.

    Huang P, Chen H, Xing G, Tan Y (2009) SGF: a state-free gradient-based forwarding protocol for wireless sensor networks. ACM Trans Sensor Net 5(2):1–14

    Article  Google Scholar 

  40. 40.

    Chen H, Shi Q, Tan R, Poor HV, Sezaki K (2010) Mobile element assisted cooperative localization for wireless sensor networks with obstacles. IEEE Trans Wirel Commun 9(3):956–963

    Article  Google Scholar 

  41. 41.

    Heinzelman WB, Chandrakasan AP, Balakrishnan H (2002) An application- specific protocol architecture for wireless microsensor networks. IEEE Trans Wirel Commun 1(4):660–670

    Article  Google Scholar 

  42. 42.

    Amundson I, Koutsoukos XD (2009) A survey on localization for mobile wireless sensor networks, in Proc. 2nd Int. Conf. Mobile Entity Localization Tracking GPS-Less Environ., pp. 235–254

  43. 43.

    Liu Y, Yang Z (2010) Location, localization, and localizability: location- awareness Technology for Wireless Networks. Springer, New York

    Google Scholar 

Download references

Acknowledgments

This research was supported by the National Natural Science Foundation of China (61671165, 6176060053), the Guangxi Natural Science Foundation (2016GXNSFGA380009), the Fund of Key Laboratory of Cognitive Radio and Information Processing (Guilin University of Electronic Technology), Ministry of Education, China and the Guangxi Key Laboratory of Wireless Wideband Communication and Signal Processing (CRKL170101), and the Innovation Project of GUET Graduate Education (2017YJCX27).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Hongbin Chen.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Feng, J., Chen, H. Healing Coverage Holes for Big Data Collection in Large-Scale Wireless Sensor Networks. Mobile Netw Appl 24, 1975–1984 (2019). https://doi.org/10.1007/s11036-019-01334-3

Download citation

Keywords

  • Coverage holes
  • Large-scale wireless sensor networks
  • Big data
  • Coverage hole healing
  • Greedy healing algorithm