Misbehavior Detection in Industrial Wireless Networks: Challenges and Directions

  • Sebastian Henningsen
  • Stefan Dietzel
  • Björn Scheuermann


In communications, there has been a paradigm shift toward the widespread adoption of wireless technologies in recent years. This evolution to—often ad-hoc—wireless communication has led to significant benefits in terms of flexibility and mobility. However, alongside these benefits, arise new attack vectors, which cannot be mitigated by traditional security measures. Especially in scenarios where traditional, proactive cryptographic techniques cannot be deployed or have been compromised, reactive mechanisms are necessary to detect intrusions. In this paper, we discuss new directions and future challenges in detecting insider attacks for the exemplary application domain of industrial wireless networks, an enabling technology for current smart factory trends. First, we review existing work on intrusion detection in mobile ad-hoc networks with a focus on physical-layer-based detection mechanisms. Second, we conduct a proof-of-concept study of insider detection in industrial wireless networks using real-world measurements from an industrial facility. Based on the study, we point out new directions for future research.


Physical-layer security Wireless security Industrial wireless networks Intrusion detection 



We would like to express our gratitude toward Robert Bosch GmbH, Corporate Research in Hildesheim for providing the channel measurements, on which the evaluation is based.

The work was partly funded by the German Federal Ministry of Education and Research under BMBF grant agreement no. 16KIS0222.


  1. 1.
    Abbas S, Merabti M, Llewellyn-Jones D (2009) Signal strength based sybil attack detection in wireless ad hoc networks. In: Proceedings of DeSE. IEEEGoogle Scholar
  2. 2.
    Abbas S, Merabti M, Llewellyn-Jones D, Kifayat K (2013) Lightweight sybil attack detection in manets. IEEE Syst J 7(2):236–248CrossRefGoogle Scholar
  3. 3.
    Bhuse V, Gupta A (2006) Anomaly intrusion detection in wireless sensor networks. J High Speed Netw 15 (1):33–51Google Scholar
  4. 4.
    Bradley AP (1997) The use of the area under the ROC curve in the evaluation of machine learning algorithms. Pattern Recogn 30(7):1145–1159CrossRefGoogle Scholar
  5. 5.
    Brands S, Chaum D (1994) Distance-bounding protocols. In: Proceedings of EUROCRYPT, EUROCRYPT. Springer, New YorkGoogle Scholar
  6. 6.
    Butun I, Morgera SD, Sankar R (2014) A survey of intrusion detection systems in wireless sensor networks. IEEE Commun Surv Tutor 16(1):266–282CrossRefGoogle Scholar
  7. 7.
    Capkun S, Hubaux JP (2006) Secure positioning in wireless networks. IEEE J Sel Areas Commun 24(2)Google Scholar
  8. 8.
    Chen Y, Xu W, Trappe W, Zhang Y (2009) Detecting and localizing wireless spoofing attacks. In: Securing emerging wireless systems. Springer, BerlinGoogle Scholar
  9. 9.
    Chen Y, Yang J, Trappe W, Martin RP (2010) Detecting and localizing identity-based attacks in wireless and sensor networks. IEEE Trans Veh Technol 59(5):2418–2434CrossRefGoogle Scholar
  10. 10.
    Demirbas M, Song Y (2006) An rssi-based scheme for sybil attack detection in wireless sensor networks. In: Proceedings of WOWMOM. IEEEGoogle Scholar
  11. 11.
    Du X, Chen HH (2008) Security in wireless sensor networks. IEEE Trans Wirel Commun 15(4):60–66CrossRefGoogle Scholar
  12. 12.
    Faria DB, Cheriton DR (2006) Detecting identity-based attacks in wireless networks using signalprints. In: Proceedings of WiSE. ACMGoogle Scholar
  13. 13.
    Glynos D, Kotzanikolaou P, Douligeris C (2005) Preventing impersonation attacks in manet with multi-factor authentication. In: Proceedings of WiOpt. IEEEGoogle Scholar
  14. 14.
    Hadziosmanovic D, Bolzoni D, Etalle S, Hartel P (2012) Challenges and opportunities in securing industrial control systems. In: Proceedings of COMPENG. IEEE, pp 1–6Google Scholar
  15. 15.
    Hadžiosmanović D, Sommer R, Zambon E, Hartel P (2014) Through the eye of the plc: semantic security monitoring for industrial processes. In: Proceedings of ACSAC, ACSAC. ACMGoogle Scholar
  16. 16.
    Henningsen S, Dietzel S, Scheuermann B (2017) Challenges of misbehavior detection in industrial wireless networks. In: Proceedings of Adhocnets 2017 (to appear)Google Scholar
  17. 17.
    Huang YA, Lee W (2003) A cooperative intrusion detection system for ad hoc networks. In: Proceedings of SASN. ACMGoogle Scholar
  18. 18.
    Jan MA, Nanda P, He X, Liu RP (2015) A sybil attack detection scheme for a centralized clustering-based hierarchical network. In: Proceedings of TrusCom, vol 1. IEEEGoogle Scholar
  19. 19.
    Jana S, Premnath SN, Clark M, Kasera SK, Patwari N, Krishnamurthy SV (2009) On the effectiveness of secret key extraction from wireless signal strength in real environments. In: Proceedings of MobiCom, MobiCom. ACMGoogle Scholar
  20. 20.
    Jøsang A (2016) Subjective logic—a formalism for reasoning under uncertainty. Artificial intelligence: foundations, theory, and algorithms. Springer, BerlinGoogle Scholar
  21. 21.
    Kargl F, van der Heijden RW, König H, Valdes A, Dacier MC (2014) Insights on the security and dependability of industrial control systems. IEEE Secur Privacy 12(6):75–78CrossRefGoogle Scholar
  22. 22.
    Lamport L, Shostak R, Pease M (1982) The byzantine generals problem. ACM Trans Program Lang Syst 4(3):382–401CrossRefzbMATHGoogle Scholar
  23. 23.
    Langner R (2011) Stuxnet: dissecting a cyberwarfare weapon. IEEE Secur Privacy 9(3):49–51CrossRefGoogle Scholar
  24. 24.
    Li Z, Trappe W, Zhang Y, Nath B (2005) Robust statistical methods for securing wireless localization in sensor networks. In: Proceedings of IPSN. IEEEGoogle Scholar
  25. 25.
    Liu K, Deng J, Varshney PK, Balakrishnan K (2007) An acknowledgment-based approach for the detection of routing misbehavior in manets. IEEE Trans Mob Comput 6(5):536–550CrossRefGoogle Scholar
  26. 26.
    Marti S, Giuli TJ, Lai K, Baker M (2000) Mitigating routing misbehavior in mobile ad hoc networks. In: Proceedings of MobiCom, MobiCom. ACMGoogle Scholar
  27. 27.
    Newsome J, Shi E, Song D, Perrig A (2004) The sybil attack in sensor networks: analysis & defenses. In: Proceedings of IPSN, IPSN. ACMGoogle Scholar
  28. 28.
    Onat I, Miri A (2005) An intrusion detection system for wireless sensor networks. In: Proceedings of WiMob, vol 3. IEEEGoogle Scholar
  29. 29.
    Radosavac S, Baras JS, Koutsopoulos I (2005) A framework for mac protocol misbehavior detection in wireless networks. In: Proceedings of WiSe. ACMGoogle Scholar
  30. 30.
    Sanzgiri K, Dahill B, Levine BN, Shields C, Belding-Royer EM (2002) A secure routing protocol for ad hoc networks. In: Proceedings of ICNP. IEEEGoogle Scholar
  31. 31.
    Sarafijanovic S, Le Boudec JY (2005) An artificial immune system approach with secondary response for misbehavior detection in mobile ad hoc networks. IEEE Trans Neural Netw 16(5):1076–1087CrossRefGoogle Scholar
  32. 32.
    Sastry N, Shankar U, Wagner D (2003) Secure verification of location claims. In: Proceedings of WiSe. ACMGoogle Scholar
  33. 33.
    Veropoulos K, Campbell C, Cristianini N (1999) Controlling the sensitivity of support vector machines. In: Proceedings of IJCAIGoogle Scholar
  34. 34.
    Wang J, Yang G, Sun Y, Chen S (2007) Sybil attack detection based on rssi for wireless sensor network. In: Proceedings of WiCom. IEEEGoogle Scholar
  35. 35.
    Xiao L, Greenstein L, Mandayam N, Trappe W (2008) A physical-layer technique to enhance authentication for mobile terminals. In: Proceedings of ICC. IEEEGoogle Scholar
  36. 36.
    Xiao L, Greenstein L, Mandayam N, Trappe W (2008) Using the physical layer for wireless authentication in time-variant channels. IEEE Trans Wirel Commun 7(7):2571–2579CrossRefGoogle Scholar
  37. 37.
    Xiao L, Greenstein L, Mandayam N, Trappe W (2009) Channel-based detection of sybil attacks in wireless networks. IEEE Trans Inf Forensics Secur 4(3):492–503CrossRefGoogle Scholar
  38. 38.
    Xiao L, Reznik A, Trappe W, Ye C, Shah Y, Greenstein L, Mandayam N (2010) Phy-authentication protocol for spoofing detection in wireless networks. In: Proceedings of GLOBECOM. IEEEGoogle Scholar
  39. 39.
    Xu W, Trappe W, Zhang Y, Wood T (2005) The feasibility of launching and detecting jamming attacks in wireless networks. In: Proceedings of MobiHoc. ACMGoogle Scholar
  40. 40.
    Xu W, Ma K, Trappe W, Zhang Y (2006) Jamming sensor networks: attack and defense strategies. Netw Mag Glob Internetw 20(3):41–47Google Scholar
  41. 41.
    Yang H, Luo H, Ye F, Lu S, Zhang L (2004) Security in mobile ad hoc networks: challenges and solutions. IEEE Wirel Commun 11(1):38–47CrossRefGoogle Scholar
  42. 42.
    Zhong S, Li L, Liu YG, Yang YR (2004) Privacy-preserving location-based services for mobile users in wireless networks. Technical ReportGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Humboldt-Universität zu BerlinBerlinGermany

Personalised recommendations