Mobile Networks and Applications

, Volume 20, Issue 6, pp 802–816 | Cite as

Context-Aware User Association for Energy Cost Saving in a Green Heterogeneous Network with Hybrid Energy Supplies

  • Bang Wang
  • Qiao Kong
  • Laurence T. Yang


In this paper, we study the user association problem to minimize the total energy cost for a green heterogeneous network with hybrid energy supplies. The power consumption of a BS in both the access network and the backhaul links are modeled. We formulate a constrained total energy cost minimization problem, which is generally hard to tackle. We propose a centralized algorithm that exploits the available context-aware information of the network, including the network architecture knowledge, users’ data requirements, and available green energy, to find a feasible and near-optimal solution. Since it is difficult to collect all information in a heterogeneous network, we also propose a distributed algorithm based on the available context-aware information of each BS’s own. Simulations are used to compare our algorithms with the maximum channel gain (MCG) algorithm and the max-RSRP algorithm. Results demonstrate that the proposed context-aware user association algorithms can significantly reduce the total energy cost.


User association algorithm Heterogeneous cellular network Green energy Wireless backhaul Energy cost saving Context-aware 



This work is supported by National Natural Science Foundation of China (Grant No: 61371141) and the Fundamental Research Funds for the Central Universities (No. HUST2015QN081).


  1. 1.
    Fehske A, Fettweis G, Malmodin J, Biczok G (2011) The global footprint of mobile communications: the ecological and economic perspective. Commun Mag 49(8):55–62CrossRefGoogle Scholar
  2. 2.
    XiaofeiWang A, Vasilakos V, Chen M, Liu Y, Kwon TT (2012) A survey of green mobile networks: opportunities and challenges. Mobile Netw Appl 17(1):4–20CrossRefGoogle Scholar
  3. 3.
    Yang M, Li Y, Jin D, Zeng L, Wu X, Vasilakos AV (2015) Software-defined and virtualized future mobile and wireless networks: a survey. ACM/Springer Mobile Netw Appl 20(1):4–18CrossRefGoogle Scholar
  4. 4.
    Lpez-Prez D, Chu X, Vasilakos AV, Claussen H (2013) On distributed and coordinated resource allocation for interference mitigation in self-organizing lte networks. IEEE/ACM Trans Netw 21(4):1145–1158CrossRefGoogle Scholar
  5. 5.
    Andrews JG (2013) Seven ways that hetnets are a cellular paradigm shift. IEEE Commun Mag 51(3):136–144CrossRefGoogle Scholar
  6. 6.
    Yao Y, Cao Q, Vasilakos AV (2013) Edal: an energy-efficient, delay-aware, and lifetime-balancing data collection protocol for wireless sensor networks. In: 2013 IEEE 10th international conference on mobile ad-hoc and sensor systemsGoogle Scholar
  7. 7.
    Xiang L, Luo J, Vasilakos A (2011) Compressed data aggregation for energy efficient wireless sensor networks. In: 2011 8th annual IEEE communications society conference on sensor, mesh and ad hoc communications and networksGoogle Scholar
  8. 8.
    Zeng Y, Xiang K, Li D, Vasilakos AV (2013) Directional routing and scheduling for green vehicular delay tolerant networks. Wireless Netw 19(2):161–173CrossRefGoogle Scholar
  9. 9.
    Damnjanovic A, Montojo J, Wei Y, Ji T, Luo T, Vajapeyam M, Yoo T, Song O, Malladi D (2011) A survey on 3gpp heterogeneous networks. IEEE Wireless Commun 18(3):10–21CrossRefGoogle Scholar
  10. 10.
    Khan MA, Tembine H, Vasilakos AV (2012) Game dynamics and cost of learning in heterogeneous 4g networks. IEEE J Select Areas Commun 30(1):198–213CrossRefGoogle Scholar
  11. 11.
    Demestichas PP, Stavroulaki V-AG, Papadopoulou L-MI, Vasilakos AV, Theologou ME (2004) Service configuration and traffic distribution in composite radio environments. IEEE Trans Syst Man Cybern Part C 34(1):69–81CrossRefGoogle Scholar
  12. 12.
    Dhillon HS, Ganti RK, Baccelli F, Andrews JG (2012) Modeling and analysis of k-tier downlink heterogeneous cellular networks. IEEE J Selected Areas Commun 30(3):550–560CrossRefGoogle Scholar
  13. 13.
    Lpez-Prez D, Chu X, Vasilakos AV, Claussen H (2014) Power minimization based resource allocation for interference mitigation in ofdma femtocell networks. IEEE J Selected Areas Commun 32(2):333–344CrossRefGoogle Scholar
  14. 14.
    Rao JB, Fapojuwo AO (2014) A survey of energy efficient resource management techniques for multicell cellular networks. IEEE Commun Surv Tutor 16(1):154–180CrossRefGoogle Scholar
  15. 15.
    Wang S, Ge M, Zhao W (2013) Energy-efficient resource allocation for ofdm-based cognitive radio networks. IEEE Trans Commun 61(8):3181–3191CrossRefGoogle Scholar
  16. 16.
    Soh YS, Quek TQS, Kountouris M, Shin H (2013) Energy efficient heterogeneous cellular networks. IEEE J Selected Area Commun 31(5):840–850CrossRefGoogle Scholar
  17. 17.
    Tipmongkolsilp O, Zaghloul S, Jukan A (2011) The evolution of cellular backhaul technologies: current issues and future trends. IEEE Communi Surv Tutor 13(1):97–113CrossRefGoogle Scholar
  18. 18.
    Li H, Attar A, Leung VCM (2012) Energy conservation via antenna scheduling in fiber-connected femto base stations. Mobile Netw Appl 17(5):685–694CrossRefGoogle Scholar
  19. 19.
    Tombaz S, Monti P, Farias F, Fiorani M, Wosinska L, Zander J (2014) Is backhaul becoming a bottleneck for green wireless access networks? In: IEEE ICCGoogle Scholar
  20. 20.
    Han T, Ansari N (2013) On optimizing green energy utilization for cellular networks with hybrid energy supplies. IEEE Trans Wireless Commun 12(8):3872–3882CrossRefGoogle Scholar
  21. 21.
    Piro G, Miozzo M, Forte G, Baldo N, Grieco LA, Boggia G, Dini P (2013) Hetnets powered by renewable energy sources: sustainable next-generation cellular networks. IEEE Int Comput 17(1):32– 39CrossRefGoogle Scholar
  22. 22.
    Hu C, Gong J, Wang X, Zhou S, Niu Z (2014) Optimal green energy utilization in mimo systems with hybrid energy supplies. IEEE Trans Veh TechnolGoogle Scholar
  23. 23.
  24. 24.
    Saraydar CU, Mandayam NB, Goodman DJ (2001) Pricing and power control in a multicell wireless data network. IEEE J Selected Area Commun 19(10):1883–1892CrossRefGoogle Scholar
  25. 25.
    Koizumi T, Higuchi K (2013) Simple decentralized cell association method for heterogeneous networks in fading channel. In: IEEE vehicular technology conferenceGoogle Scholar
  26. 26.
    Oh J, Han Y (2012) Cell selection for range expansion with almost blank subframe in heterogeneous networks. In: IEEE 23rd international symposium on personal, indoor and mobile radio communications (PIMRC), pp 669–673Google Scholar
  27. 27.
    Jo H-S, Sang YJ, Xia P, Andrews JG (2012) Heterogeneous cellular networks with flexible cell association: a comprehensive downlink sinr analysis. IEEE Trans Wireless Commun 11(10):3484–3495CrossRefGoogle Scholar
  28. 28.
    Lee J-W, Mazumdar RR, Shroff NB (2006) Joint resource allocation and base-station assignment for the downlink in cdma networks. IEEE J Selected Area Commun 14(1):1–14Google Scholar
  29. 29.
    Corroy S, Falconetti L, Mathar R (2012) Dynamic cell association for downlink sum rate maximization in multi-cell heterogeneous networks. In: IEEE ICCGoogle Scholar
  30. 30.
    Pervaiz H, Musavian L, Ni Q (2013) Joint user association and energy-efficient resource allocation with minimum-rate constraints in two-tier hetnets. In: IEEE 24th international symposium on personal, indoor and mobile radio communications: MAC and cross-layer design trackGoogle Scholar
  31. 31.
    Ye Q, Rong B, Chen Y, Al-Shalash M, Caramanis C, Andrews JG (2013) User association for load balancing in heterogeneous cellular networks. IEEE Trans Wireless Commun 12(6):2706–2716CrossRefGoogle Scholar
  32. 32.
    Sanjabi M, Razaviyayn M, Luo Z-Q (2014) Optimal joint base station assignment and beamforming for heterogeneous networks. IEEE Trans Signal Process 62(8):1950–1961MathSciNetCrossRefGoogle Scholar
  33. 33.
    Jin Y, Qiu L (2013) Jonit user association and interference coordination in heterogeneous cellular networks. IEEE Commun Lett 17(12):2296–2299CrossRefGoogle Scholar
  34. 34.
    Shen K, Yu W (2014) Distributed pricing-based user association for downlink heterogeneous cellular networks. IEEE J Selected Area Commun 32(6):1100–1114MathSciNetCrossRefGoogle Scholar
  35. 35.
    Son K, Kim H, Yi Y, Krishnamachari B (2011) Base station operation and user association mechanisms for energy-delay tradeoffs in green cellular networks. IEEE J Selected Area Commun 29(8):1525–1536CrossRefGoogle Scholar
  36. 36.
    Mishra S, Rangineni S, Murthy CSR (2014) Exploiting an optimal user association strategy for interference management in hetnets. IEEE Commun Lett 18(10):1799–1802CrossRefGoogle Scholar
  37. 37.
    Zhou J, Li M, Liu L, She X, Chen L (2010) Energy source aware target cell selection and coverage optimization for power saving in cellular networks. In: IEEE/ACM int. conf. green comput. commun., int. conf. cyber, physical social computGoogle Scholar
  38. 38.
    Gong J, Thompson JS, Zhou S, Niu Z (2014) Base station sleeping and resource allocation in renewable energy powered cellular networks. IEEE Trans Commun 62(11):3801–3813CrossRefGoogle Scholar
  39. 39.
    Shaddad R, Mohammad AB, Al-Gailani SA, Al-hetar AM, Elmagzoub MA (2014) A survey on access technologies for broadband optical and wireless networks. J Netw Comput Appl 41(1):459–472CrossRefGoogle Scholar
  40. 40.
    Galeana-Zapin H, Ferrs R (2010) Design and evaluation of a backhaul-aware base station assignment algorithm for of dma-based cellular networks. IEEE Trans Wireless Commun 9(10):3226–3237CrossRefGoogle Scholar
  41. 41.
    Olmos JJ, Ferrús R, Galeana-Zapién H (2013) Analytical modeling and performance evaluation of cell selection algorithms for mobile networks with backhaul capacity constraints. IEEE Trans Wireless Commun 12(12):6011–6023CrossRefGoogle Scholar
  42. 42.
    Mesodiakaki A, Adelantado F, Alonso L, Verikoukis C (2014) Energy-efficient context-aware user association for outdoor small cell heterogeneous networks. In: IEEE ICCGoogle Scholar
  43. 43.
    Auer G, Giannini V, Desset C, Godor I, Skillermark P, Olsson M, Imran MA, Sabella D, Gonzalez MJ, Blume O, Fehske A (2011) How much energy is needed to run a wireless network? IEEE Trans Wireless Commun 18(5):40–49CrossRefGoogle Scholar
  44. 44.
    Huang K-C, Wang Z (2011) Millimeter wave communication systems. Wiley IEEE PressGoogle Scholar
  45. 45.
    Yen Y-S, Chao H-C, Chang R-S, Vasilako A (2011) Flooding-limited and multi-constrained qos multicast routing based on the genetic algorithm for manets. Math Comput Modell 53(11-12):2238–2250CrossRefGoogle Scholar
  46. 46.
    3GPP TR36.814, Further advancements for E-UTRA physical layer aspectsGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.School of Electronic Information and CommunicationsHuazhong University of Science and Technology (HUST)WuhanChina
  2. 2.School of Computer Science and TechnologyHuazhong University of Science and Technology (HUST)WuhanChina
  3. 3.Department of Computer ScienceSt. Francis Xavier UniversityAntigonishCanada

Personalised recommendations