Advertisement

Mobile Networks and Applications

, Volume 14, Issue 4, pp 415–432 | Cite as

Joint Monitoring and Routing in Wireless Sensor Networks Using Robust Identifying Codes

  • Moshe Laifenfeld
  • Ari Trachtenberg
  • Reuven Cohen
  • David Starobinski
Article

Abstract

Wireless Sensor Networks (WSNs) provide an important means of monitoring the physical world, but their limitations present challenges to fundamental network services such as routing. In this work we utilize an abstraction of WSNs based on the theory of identifying codes. This abstraction has been useful in recent literature for a number of important monitoring problems, such as localization and contamination detection. In our case, we use it to provide a joint infrastructure for efficient and robust monitoring and routing in WSNs. Specifically, we make use of efficient and distributed algorithm for generating robust identifying codes, an NP-hard problem, with a logarithmic performance guarantee based on a reduction to the set k-multicover problem. We also show how this same identifying-code infrastructure provides a natural labeling that can be used for near-optimal routing with very small routing tables. We provide experimental results for various topologies that illustrate the superior performance of our approximation algorithms over previous identifying code heuristics.

Keywords

robust identifying codes distributed algorithms routing sensor networks 

Notes

Acknowledgements

This material is based, in part, upon work supported by the National Science Foundation under Grants 0132802, CCF-0729158, CCR-0133521 and CNS-0435312.

References

  1. 1.
    Juang P, Oki H, Wang Y, Martonosi M, Peh LS, Rubenstein D (2002) Energy-efficient computing for wildlife tracking: design tradeoffs and early experiences with zebranet. In: ASPLOS-X: proceedings of the 10th international conference on architectural support for programming languages and operating systems, San Jose, 5–9 October 2002, pp 96–107Google Scholar
  2. 2.
    Tolle G, Polastre J, Szewczyk R, Culler D, Turner N, Tu K, Burgess S, Dawson T, Buonadonna P, Gay D, Hong W (2005) A macroscope in the redwoods. In: SenSys ’05: proceedings of the 3rd international conference on embedded networked sensor systems. IEEE, Los Alamitos, pp 51–63CrossRefGoogle Scholar
  3. 3.
    Xu N, Rangwala S, Chintalapudi K, Ganesan D, Broad A, Govindan R, Estrin D (2004) A wireless sensor network for structural monitoring. In: SenSys ’04: Proceedings of the 2nd international conference on embedded networked sensor systems. IEEE, Los AlamitosGoogle Scholar
  4. 4.
    Sensicast Systems, Inc. (2005) Pump monitoring at a nuclear generating station [Online]. http://www.sensicast.com/solutions/casestudys.php
  5. 5.
    Ray S, Ungrangsi R, Pellegrinin FD, Trachtenberg A, Starobinski D (2003) Robust location detection in emergency sensor networks. In: Proceedings INFOCOM, April. IEEE, Piscataway, pp 1044–1053Google Scholar
  6. 6.
    Ray S, Starobinski D, Trachtenberg A, Ungrangsi R (2004) Robust location detection with sensor networks. IEEE J Sel Areas Commun 22(6):1016–1025, August (Special Issue on Fundamental Performance Limits of Wireless Sensor Networks)CrossRefGoogle Scholar
  7. 7.
    Berger-Wolf T, Hart W, Saia J (2003) Discrete sensor placement problems in distribution networks. In: SIAM conference on mathematics for industry, Toronto, October 2003Google Scholar
  8. 8.
    Berger-Wolf T, Hart W, Saia J (2005) Discrete sensor placement problems in distribution networks. J Math Comput Model 42(13):1385–1396MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Karpovsky MG, Chakrabarty K, Levitin LB (1998) A new class of codes for identification of vertices in graphs. IEEE Trans Inf Theory 44(2):599–611, MarchMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Charon I, Hudry O, Lobstein A (2003) Minimizing the size of an identifying or locating-dominating code in a graph is NP-hard. Theor Comp Sci 290(3):2109–2120MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Charon I, Hudry O, Lobstein A (2002) Identifying and locating-dominating codes: NP-completeness results for directed graphs. IEEE Trans Inf Theory 48(8):2192–2200, AugustMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Moncel J (2006) On graphs of n vertices having an identifying code of cardinality \({\left\lceil {log_2(n+1)} \right\rceil}\). Discrete Appl Math 154(14):2032–2039MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Laifenfeld M (2008) Localization and identification in networks using robust identifying codes. In: Information theory and application workshop, San Diego, 27 January–1 February 2008Google Scholar
  14. 14.
    Laifenfeld M, Trachtenberg A (2008) Identifying codes and covering problems. IEEE Trans Inf Theory 54:3929–3950CrossRefMathSciNetGoogle Scholar
  15. 15.
    Laifenfeld M, Trachtenberg A, Cohen R, Starobinski D (2007) Joint monitoring and routing in wireless sensor networks using robust identifying codes. In: IEEE broadnets 2007, September. IEEE, Piscataway, pp 197–206Google Scholar
  16. 16.
    Moncel J, Frieze A, Martin R, Ruszink M, Smyth C (2005) Identifying codes in random networks. In: IEEE international symposium on information theory, Adelaide, 4–9 September 2005Google Scholar
  17. 17.
    Cormen T, Leiserson C, Rivest R, Stein C (2001) Introduction to algorithms. MIT, CambridgeMATHGoogle Scholar
  18. 18.
    Johnson DS (1974) Approximation algorithms for combinatorial problems. J Comput Syst Sci 9:256–278MATHCrossRefGoogle Scholar
  19. 19.
    Feige U (1998) A threshold of ln n for approximating set cover. J ACM 45(4):634–652MATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Vazirani V (2001) Approximation algorithms. Springer, HeidelbergGoogle Scholar
  21. 21.
    Laifenfeld M, Trachtenberg A (2005) Disjoint identifying codes for arbitrary graphs. In: IEEE international symposium on information theory, Adelaide, 4–9 September 2005Google Scholar
  22. 22.
    Rajagopalan S, Vazirani V (1998) Primal-dual RNC approximation algorithms for set cover and covering integer programs. SIAM J Comput 28:525–540MATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    Bartal Y, Byers JW, Raz D (1997) Global optimization using local information with applications to flow control. In: IEEE symposium on foundations of computer science, October, pp 303–312. [Online]. citeseer.ist.psu.edu/bartal97global.html
  24. 24.
    Kuhn F, Wattenhofer R (2003) Constant-time distributed dominating set approximation. In: Proceedings of the 22nd ACM symposium on principles of distributed computing (PODC’03), pp 25–32, July. [Online]. citeseer.ist.psu.edu/kuhn03constanttime.html
  25. 25.
    Müller T, Sereni J-S (2007) Identifying and locating-dominating codes in (random) geometric networks. Comb Probab Comput (ITI Series 2006-323 and KAM-DIMATIA Series 2006-797)Google Scholar
  26. 26.
    Peleg D, Upfal E (1989) A tradeoff between space and efficiency for routing tables. J ACM 36:510–530MATHCrossRefMathSciNetGoogle Scholar
  27. 27.
    Thorup M, Zwick U (2001) Compact routing schemes. In: Proceedings of the thirteenth annual ACM symposium on parallel algorithms and architectures. ACM, New York, pp 1–10CrossRefGoogle Scholar
  28. 28.
    Cowen L (2001) Compact routing with minimum stretch. J Algorithms 38(1):170–183MATHCrossRefMathSciNetGoogle Scholar
  29. 29.
    Gavoille C (1999) A survey on interval routing schemes. Theor Comput Sci 249:217–253MathSciNetGoogle Scholar
  30. 30.
    Jeremy Blum AT, Ding M Cheng, X (2004) Connected dominating set in sensor networks and MANETs. In: Du D-Z, Pardalos P (eds) Handbook of combinatorial optimization. Kluwer, DordrechtGoogle Scholar
  31. 31.
    Wu J, Li H (2001) A dominating-set-based routing scheme in ad hoc wireless networks. Telecommun Syst 18:13–36MATHCrossRefGoogle Scholar
  32. 32.
    Wu J (2002) Dominating-set-based routing in ad hoc wireless networks. In: Stojmenovic I (ed) Handbook of wireless networks and mobile computing. Wiley, New YorkGoogle Scholar
  33. 33.
    Chen Y, Liestman A, Liu J (2004) Clustering algorithms for ad hoc wireless networks. In: Ad hoc and sensor networks. [Online]. citeseer.ist.psu.edu/chen04clustering.html
  34. 34.
    Yu J, Chong P (2005) A survey of clustering schemes for mobile ad hoc networks. IEEE Commun Surv Tutor 7:32–48CrossRefGoogle Scholar
  35. 35.
    Honkala I, Karpovsky M, Levitin L (2006) On robust and dynamic identifying codes. IEEE Trans Inf Theory 52(2):599–612, FebruaryCrossRefMathSciNetGoogle Scholar
  36. 36.
    Abraham I, Malkhi D (2004) Compact routing on euclidean metrics. In: 23rd ACM symposium on principles of distributed computing (PODC 2004). ACM, New YorkGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Moshe Laifenfeld
    • 1
  • Ari Trachtenberg
    • 1
  • Reuven Cohen
    • 1
  • David Starobinski
    • 1
  1. 1.Department of Electrical and Computer EngineeringBoston UniversityBostonUSA

Personalised recommendations