Skip to main content

Advertisement

Log in

Non-coding RNAs associated with autophagy and their regulatory role in cancer therapeutics

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Cancer widely affects the world’s health population and ranks second leading cause of death globally. Because of poor prognosis of various types of cancer such as sarcoma, lymphoma, adenomas etc., their high recurrence and metastasis rate and low early diagnosis rate have become concern lately. Role of autophagy in cancer progression is being studied since long. Autophagy is cell’s self-degradative mechanism towards stress and has role in degradation of the cytoplasmic macromolecules which has potential to damage other cytosolic molecules. Autophagy can promote as well as inhibit tumorigenesis depending upon the associated protein combinations in cancer cells. Recent studies have shown that non-coding RNAs (ncRNAs) do not code for protein but play essential role in modulation of gene expression. At transcriptional level, different ncRNAs like lncRNAs, miRNAs and circRNAs directly or indirectly affect different stages of autophagy like autophagy-dependent and non-apoptotic cell death in cancer cells. This review focuses on the involvement of ncRNAs in autophagy and the modulation of several cancer signal transduction pathways in cancers such as lung, breast, prostate, pancreatic, thyroid, and kidney cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

Non-coding RNA:

NcRNA

lncRNA:

Long non coding RNA

miRNA:

MicroRNA

circRNA:

Circular RNA

ATG:

Autophagy related gene

ATG16L1:

Autophagy related 16 like 1 protein

mTOR:

Mammalian target of rapamycin

ULK1:

Unc-51 like autophagy activating kinase 1

FIP200:

Focal adhesion kinase family-interacting protein of 200 kDa

PIP3 kinase III:

Phosphatidylinositol 3 kinase III

LC3II:

Microtubule-associated protein 1A/1B-light chain 3

piRNA:

Piwi interacting RNA

siRNA:

Small interfering RNA

snoRNA:

Small nucleolar RNA

ceRNA:

Competing endogenous RNA

TKI:

Tyrosine kinase inhibitor

NSCLC:

Non-small cell lung cancer

TIGAR:

TP53-inducible glycolysis and apoptosis regulator

ROS:

Reactive oxygen species

DDP:

Dipeptidyl peptidase

EPG2:

Ectopic P granules protein 2

MALAT1:

Metastasis-Associated Lung Adenocarcinoma Transcript 1

HuR:

Human antigen R

PI3K:

Phosphoinositide 3-kinase

GAS5:

Growth arrest specific 5 gene

BLACAT 1:

Bladder cancer associated transcript 1

MRP1:

Multidrug resistance associated protein 1

TSLNC8:

Tumor-suppressive lncRNA on chromosome 8p12

STAT3:

Signal transducer and activator of transcription 3

HIF-1α:

Hypoxia inducible factor 1α

PIK3CB:

Phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit beta

SQSTM1:

Sequestosome 1

PRKAA/AMPK:

Protein kinase AMP activated catalytic subunit alpha

TOR:

Target of rapamycin

Wnt:

Wingless-related integration site

BRCA1:

Breast cancer gene 1

PTEN:

Phosphatase and Tensin Homolog deleted on chromosome 10

ELK1:

ETS like-1 protien

ELK3:

ETS like-2 protien

SMAD4:

SMAD family member 4

TGFβ:

Transforming growth factor beta

MAPK:

Mitogen activated protein kinase

XIAP:

X-linked inhibitor of apoptosis protein

HMGB1:

High mobility group box 1

PAX6:

Paired box protein 6

MMPs:

Matrix metalloproteinases

JNK:

C-Jun N-terminal kinase 1

MAPT-AS1:

MAPT Antisense RNA 1

ERK1/2:

Extracellular signal regulated kinase 1/2

LAMP1:

Lysosomal-associated membrane protein 1

RELN:

Reclin

Nrf2:

Nuclear factor erythroid related factor 2

SMC1A:

Structural maintenance of chromosome protein 1A

TRIP13:

Thyroid receptor-interacting protein 13

GAPDH:

Glyceraldehyde-3-phosphate dehydrogenase

MAP1LC3B2:

Microtubule associated protein 1 light chain 3 beta 2

H2AFY:

H2A histone family, member Y

HnRNP-1:

Heterogeneous nuclear ribonucleoprotein A1

EGR1:

Early growth response 1 gene

KIF18A:

Kinesin family member 18A

TUG1:

Taurine up-regulated 1

LKB1:

Liver kinase B1

AMPK:

AMP activated protein kinase

TSPAN1:

Tetraspanin 1

FAM83A:

Family member with sequence similarity 83A

eIF5A2:

Eukaryotic translation initiation factor 5A2

AGR2:

Anterior gradient protein 2 homolog

STK4:

Serine/threonine-protein kinase 4

FOXA1:

Forkhead box protein A1

CHD6:

Chromodomain helicase DNA binding protein 6

GAS8-AS1:

GAS8-antisense RNA 1

LRRK2:

Leucine rich repeat kinase 2

SLC7A11:

Solute carrier family 7 member 11

FOXP3:

Foxhead box P3

FOXE1:

Foxhead box E1

ITGA3:

Integrin subunit alpha 3

ITPR1:

Inositol 1,4,5-trisphosphate receptor type 1

NOX4:

NADPH oxidase 4

CCNB1:

Cyclin B1

References

  1. Siegel RL, Miller KD, Fuchs HE, Jemal A (2021) Cancer statistics, 2021. Cancer J Clin 71(1):7–33. https://doi.org/10.3322/caac.21654

    Article  Google Scholar 

  2. Cho YY, Kim DJ, Lee HS, Jeong CH, Cho EJ, Kim MO et al (2013) Autophagy and cellular senescence mediated by Sox2 suppress malignancy of cancer cells. PLoS ONE 8(2):e57172. https://doi.org/10.1371/journal.pone.0057172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Dragowska WH, Weppler SA, Wang JC, Wong LY, Kapanen AI, Rawji JS et al (2013) Induction of autophagy is an early response to gefitinib and a potential therapeutic target in breast cancer. PLoS ONE 8(10):e76503. https://doi.org/10.1371/journal.pone.0076503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Rezaei S, Mahjoubin-Tehran M, Aghaee-Bakhtiari SH, Jalili A, Movahedpour A, Khan H et al (2020) Autophagy-related MicroRNAs in chronic lung diseases and lung cancer. Crit Rev Oncol Hematol. https://doi.org/10.1016/j.critrevonc.2020.103063

    Article  PubMed  Google Scholar 

  5. Talebian S, Daghagh H, Yousefi B, Ȍzkul Y, Ilkhani K, Seif F, Alivand MR (2020) The role of epigenetics and non-coding RNAs in autophagy: a new perspective for thorough understanding. Mech Ageing Dev. https://doi.org/10.1016/j.mad.2020.111309

    Article  PubMed  Google Scholar 

  6. Qin Y, Sun W, Zhang H, Zhang P, Wang Z, Dong W, He L, Zhang T, Shao L, Zhang W, Wu C (2018) LncRNA GAS8-AS1 inhibits cell proliferation through ATG5-mediated autophagy in papillary thyroid cancer. Endocrine 59(3):555–564. https://doi.org/10.1007/s12020-017-1520-1

    Article  CAS  PubMed  Google Scholar 

  7. Qin Y, Sun W, Wang Z, Dong W, He L, Zhang T, Shao L, Zhang H (2020) ATF2-induced lncRNA GAS8-AS1 promotes autophagy of thyroid cancer cells by targeting the miR-187-3p/ATG5 and miR-1343-3p/ATG7 axes. Mol Ther Nucl Acids 22:584–600. https://doi.org/10.1016/j.omtn.2020.09.022

    Article  CAS  Google Scholar 

  8. Zhang X, He Z, Xiang L, Li L, Zhang H, Lin F, Cao H (2019) Codelivery of GRP78 siRNA and docetaxel via RGD-PEG-DSPE/DOPA/CaP nanoparticles for the treatment of castration-resistant prostate cancer. Drug Des Dev Ther 13:1357. https://doi.org/10.2147/DDDT.S198400

    Article  CAS  Google Scholar 

  9. Yang Y, Liang C (2015) MicroRNAs: an emerging player in autophagy. ScienceOpen Res. https://doi.org/10.14293/S2199-1006.1.SOR-LIFE.A181CU.v1

    Article  PubMed  Google Scholar 

  10. Jiang PC, Bu SR (2019) Clinical value of circular RNAs and autophagy-related miRNAs in the diagnosis and treatment of pancreatic cancer. Hepatobiliary Pancreat Dis Int 18(6):511–516. https://doi.org/10.1016/j.hbpd.2019.09.009

    Article  PubMed  Google Scholar 

  11. Islam Khan MZ, Tam SY, Law HKW (2019) Autophagy-modulating long non-coding RNAs (LncRNAs) and their molecular events in cancer. Front Genet 9:750. https://doi.org/10.3389/fgene.2018.00750

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Doldi V, El Bezawy R, Zaffaroni N (2021) MicroRNAs as epigenetic determinants of treatment response and potential therapeutic targets in prostate cancer. Cancers 13(10):2380. https://doi.org/10.3390/cancers13102380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Wei J, Ge X, Tang Y, Qian Y, Lu W, Jiang K et al (2020) An autophagy-related long noncoding RNA signature contributes to poor prognosis in colorectal cancer. Journal of oncology. https://doi.org/10.1155/2020/4728947

    Article  PubMed  PubMed Central  Google Scholar 

  14. Liu C, Wang JO, Zhou WY, Chang XY, Zhang MM, Zhang Y, Yang XH (2019) Long non-coding RNA LINC01207 silencing suppresses AGR2 expression to facilitate autophagy and apoptosis of pancreatic cancer cells by sponging miR-143-5p. Mol Cell Endocrinol 493:110424. https://doi.org/10.1016/j.mce.2019.04.004

    Article  CAS  PubMed  Google Scholar 

  15. Nam RK, Benatar T, Amemiya Y, Sherman C, Seth A (2020) Mir-139 regulates autophagy in prostate cancer cells through BECLIN-1 and mTOR signaling proteins. Anticancer Res 40(12):6649–6663. https://doi.org/10.21873/anticanres.14689

    Article  CAS  PubMed  Google Scholar 

  16. Son SW, Song MG, Yun BD, Park JK (2021) Noncoding RNAs associated with therapeutic resistance in pancreatic cancer. Biomedicines 9(3):263. https://doi.org/10.3390/biomedicines9030263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Xu P, Wu Q, Yu J, Rao Y, Kou Z, Fang G et al (2020) A systematic way to infer the regulation relations of miRNAs on target genes and critical miRNAs in cancers. Front Genet 11:278. https://doi.org/10.3389/fgene.2020.00278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Rothschild SI, Gautschi O, Batliner J, Gugger M, Fey MF, Tschan MP (2017) MicroRNA-106a targets autophagy and enhances sensitivity of lung cancer cells to Src inhibitors. Lung Cancer 107:73–83. https://doi.org/10.1016/j.lungcan.2016.06.004

    Article  PubMed  Google Scholar 

  19. Li S, Zeng X, Ma R, Wang L (2018) MicroRNA-21 promotes the proliferation, migration and invasion of non-small cell lung cancer A549 cells by regulating autophagy activity via AMPK/ULK1 signaling pathway. Exp Ther Med 16(3):2038–2045. https://doi.org/10.3892/etm.2018.6370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Chen S, Li P, Li J, Wang Y, Du Y, Chen X et al (2015) MiR-144 inhibits proliferation and induces apoptosis and autophagy in lung cancer cells by targeting TIGAR. Cell Physiol Biochem 35(3):997–1007. https://doi.org/10.1159/000369755

    Article  CAS  PubMed  Google Scholar 

  21. Zhang W, Dong YZ, Du X, Peng XN, Shen QM (2019) MiRNA-153–3p promotes gefitinib-sensitivity in non-small cell lung cancer by inhibiting ATG5 expression and autophagy. Eur Rev Med Pharmacol Sci 23:2444–2452. https://doi.org/10.26355/eurrev_201903_17391

    Article  CAS  PubMed  Google Scholar 

  22. Hua L, Zhu G, Wei J (2018) MicroRNA-1 overexpression increases chemosensitivity of non-small cell lung cancer cells by inhibiting autophagy related 3-mediated autophagy. Cell Biol Int 42(9):1240–1249. https://doi.org/10.1002/cbin.10995

    Article  CAS  PubMed  Google Scholar 

  23. Li H, Liu J, Cao W, Xiao X, Liang L, Liu-Smith F et al (2019) C-myc/miR-150/EPG5 axis mediated dysfunction of autophagy promotes development of non-small cell lung cancer. Theranostics 9(18):5134. https://doi.org/10.7150/thno.34887

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Li S, Mei Z, Hu HB, Zhang X (2018) The lncRNA MALAT1 contributes to non-small cell lung cancer development via modulating miR-124/STAT3 axis. J Cell Physiol 233(9):6679–6688. https://doi.org/10.1002/jcp.26325

    Article  CAS  PubMed  Google Scholar 

  25. Li C, Zhao W, Pan X, Li X, Yan F, Liu S et al (2020) LncRNA KTN1-AS1 promotes the progression of non-small cell lung cancer via sponging of miR-130a-5p and activation of PDPK1. Oncogene 39(39):6157–6171. https://doi.org/10.1038/s41388-020-01427-4

    Article  CAS  PubMed  Google Scholar 

  26. Yu X, Ye X, Lin H, Feng N, Gao S, Zhang X, Wang Y, Yu H, Deng X, Qian B (2018) Knockdown of long non-coding RNA LCPAT1 inhibits autophagy in lung cancer. Cancer Biol Med 15(3):228–237. https://doi.org/10.20892/j.issn.2095-3941.2017.0150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Deng X, Feng N, Zheng M, Ye X, Lin H, Yu X et al (2017) PM2 5 exposure-induced autophagy is mediated by lncRNA loc146880 which also promotes the migration and invasion of lung cancer cells. Biochem Biophys Acta 1861(2):112–125. https://doi.org/10.1016/j.bbagen.2016.11.009

    Article  CAS  Google Scholar 

  28. Zhang N, Yang GQ, Shao XM, Wei L (2016) GAS5 modulated autophagy is a mechanism modulating cisplatin sensitivity in NSCLC cells. Eur Rev Med Pharmacol Sci 20(11):2271–2277

    CAS  PubMed  Google Scholar 

  29. Huang FX, Chen HJ, Zheng FX, Gao ZY, Sun PF, Peng Q et al (2019) LncRNA BLACAT1 is involved in chemoresistance of non-small cell lung cancer cells by regulating autophagy. Int J Oncol 54(1):339–347. https://doi.org/10.3892/ijo.2018.4614

    Article  CAS  PubMed  Google Scholar 

  30. Yang Y, Jiang C, Yang Y, Guo L, Huang J, Liu X et al (2018) Silencing of LncRNA-HOTAIR decreases drug resistance of non-small cell lung cancer cells by inactivating autophagy via suppressing the phosphorylation of ULK1. Biochem Biophys Res Commun 497(4):1003–1010. https://doi.org/10.1016/j.bbrc.2018.02.141

    Article  CAS  PubMed  Google Scholar 

  31. Zhang L, Wang Y, Xia S, Yang L, Wu D, Zhou Y, Lu J (2020) Long noncoding RNA PANDAR inhibits the development of lung cancer by regulating autophagy and apoptosis pathways. J Cancer 11(16):4783. https://doi.org/10.7150/jca.45291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Fan H, Li J, Wang J, Hu Z (2019) Long non-coding RNAs (lncRNAs) tumor-suppressive role of lncRNA on chromosome 8p12 (TSLNC8) inhibits tumor metastasis and promotes apoptosis by regulating interleukin 6 (IL-6)/signal transducer and activator of transcription 3 (STAT3)/hypoxia-inducible factor 1-alpha (HIF-1α) signaling pathway in non-small cell lung cancer. Med Sci Monitor 25:7624. https://doi.org/10.12659/MSM.917565

    Article  CAS  Google Scholar 

  33. Li H, Huang H, Li S, Mei H, Cao T, Lu Q (2021) Long non-coding RNA ADAMTS9-AS2 inhibits liver cancer cell proliferation, migration and invasion. Exp Ther Med 21(6):1–9. https://doi.org/10.3892/etm.2021.9991

    Article  CAS  Google Scholar 

  34. Shackelford DB, Shaw RJ (2009) The LKB1–AMPK pathway: metabolism and growth control in tumour suppression. Nat Rev Cancer 9(8):563–575. https://doi.org/10.1038/nrc2676

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kong R (2020) Circular RNA hsa_circ_0085131 is involved in cisplatin-resistance of non-small-cell lung cancer cells by regulating autophagy. Cell Biol Int 44(9):1945–1956. https://doi.org/10.1002/cbin.11401

    Article  CAS  PubMed  Google Scholar 

  36. Fan L, Li B, Li Z, Sun L (2021) Identification of autophagy related circRNA-miRNA-mRNA-subtypes network with radiotherapy responses and tumor immune microenvironment in non-small cell lung cancer. Front Genet. https://doi.org/10.3389/fgene.2021.730003

    Article  PubMed  PubMed Central  Google Scholar 

  37. Zhang F, Cheng R, Li P, Lu C, Zhang G (2021) Hsa_circ_0010235 functions as an oncogenic drive in non-small cell lung cancer by modulating miR-433-3p/TIPRL axis. Cancer Cell Int 21(1):1–14. https://doi.org/10.1186/s12935-021-01764-8

    Article  CAS  Google Scholar 

  38. Rahmani F, Tabrizi AT, Hashemian P, Alijannejad S, Rahdar HA, Ferns GA et al (2020) Role of regulatory miRNAs of the Wnt/β-catenin signaling pathway in tumorigenesis of breast cancer. Gene 754:144892. https://doi.org/10.1016/j.gene.2020.144892

    Article  CAS  PubMed  Google Scholar 

  39. Ren Y, Chen Y, Liang X, Lu Y, Pan W, Yang M (2017) MiRNA-638 promotes autophagy and malignant phenotypes of cancer cells via directly suppressing DACT3. Cancer Lett 390:126–136. https://doi.org/10.1016/j.canlet.2017.01.009

    Article  CAS  PubMed  Google Scholar 

  40. Ahmad A, Zhang W, Wu M, Tan S, Zhu T (2018) Tumor-suppressive miRNA-135a inhibits breast cancer cell proliferation by targeting ELK1 and ELK3 oncogenes. Genes Genom 40(3):243–251. https://doi.org/10.1007/s13258-017-0624-6

    Article  CAS  Google Scholar 

  41. Cheng Y, Li Z, Xie J, Wang P, Zhu J, Li Y, Wang Y (2018) MiRNA-224-5p inhibits autophagy in breast cancer cells via targeting Smad4. Biochem Biophys Res Commun 506(4):793–798. https://doi.org/10.1016/j.bbrc.2018.10.150

    Article  CAS  PubMed  Google Scholar 

  42. Kandettu A, Radhakrishnan R, Chakrabarty S, Sriharikrishnaa S, Kabekkodu SP (2020) The emerging role of miRNA clusters in breast cancer progression. Biochem Biophys Acta. https://doi.org/10.1016/j.bbcan.2020.188413

    Article  Google Scholar 

  43. Chen P, He YH, Huang X, Tao SQ, Wang XN, Yan H, Wu ZS (2017) MiR-23a modulates X-linked inhibitor of apoptosis-mediated autophagy in human luminal breast cancer cell lines. Oncotarget 8(46):80709. https://doi.org/10.18632/oncotarget.21080

    Article  PubMed  PubMed Central  Google Scholar 

  44. Liu L, He J, Wei X, Wan G, Lao Y, Xu W et al (2017) MicroRNA-20a-mediated loss of autophagy contributes to breast tumorigenesis by promoting genomic damage and instability. Oncogene 36(42):5874–5884. https://doi.org/10.1038/onc.2017.193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Han M, Hu J, Lu P, Cao H, Yu C, Li X et al (2020) Exosome-transmitted miR-567 reverses trastuzumab resistance by inhibiting ATG5 in breast cancer. Cell Death Dis 11(1):1–15. https://doi.org/10.1038/s41419-020-2250-5

    Article  CAS  Google Scholar 

  46. Soni M, Patel Y, Markoutsa E, Jie C, Liu S, Xu P, Chen H (2018) Autophagy, cell viability, and chemoresistance are regulated by miR-489 in breast cancer. Mol Cancer Res 16(9):1348–1360. https://doi.org/10.1158/1541-7786.MCR-17-0634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Shi Y, Gong W, Lu L, Wang Y, Ren J (2019) Upregulation of miR-129-5p increases the sensitivity to Taxol through inhibiting HMGB1-mediated cell autophagy in breast cancer MCF-7 cells. Braz J Med Biol Res. https://doi.org/10.1590/1414-431X20198657

    Article  PubMed  PubMed Central  Google Scholar 

  48. Zhang XH, Li BF, Ding J, Shi L, Ren HM, Liu K et al (2020) LncRNA DANCR-miR-758-3p-PAX6 molecular network regulates apoptosis and autophagy of breast cancer cells. Cancer Manage Res 12:4073. https://doi.org/10.2147/CMAR.S254069

    Article  CAS  Google Scholar 

  49. Yu Y, Lv F, Liang D, Yang Q, Zhang B, Lin H et al (2017) HOTAIR may regulate proliferation, apoptosis, migration and invasion of MCF-7 cells through regulating the P53/Akt/JNK signaling pathway. Biomed Pharmacother 90:555–561. https://doi.org/10.1016/j.biopha.2017.03.054

    Article  CAS  PubMed  Google Scholar 

  50. Li G, Qian L, Tang X, Chen Y, Zhao Z, Zhang C (2020) Long non-coding RNA growth arrest-specific 5 (GAS5) acts as a tumor suppressor by promoting autophagy in breast cancer. Mol Med Rep 22(3):2460–2468. https://doi.org/10.3892/mmr.2020.11334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Wang D, Li J, Cai F, Xu Z, Li L, Zhu H et al (2019) Overexpression of MAPT-AS1 is associated with better patient survival in breast cancer. Biochem Cell Biol 97(2):158–164. https://doi.org/10.1139/bcb-2018-0039

    Article  CAS  PubMed  Google Scholar 

  52. Liang G, Ling Y, Mehrpour M, Saw PE, Liu Z, Tan W et al (2020) Autophagy-associated circRNA circCDYL augments autophagy and promotes breast cancer progression. Mol Cancer 19(1):1–16. https://doi.org/10.1186/s12943-020-01152-2

    Article  CAS  Google Scholar 

  53. Du WW, Yang W, Li X, Awan FM, Yang Z, Fang L et al (2018) A circular RNA circ-DNMT1 enhances breast cancer progression by activating autophagy. Oncogene 37(44):5829–5842. https://doi.org/10.1038/s41388-018-0369-y

    Article  CAS  PubMed  Google Scholar 

  54. Yu X, Li R, Shi W, Jiang T, Wang Y, Li C et al (2016) Silencing of MicroRNA-21 confers the sensitivity to tamoxifen and fulvestrant by enhancing autophagic cell death through inhibition of the PI3K-AKT mTOR pathway in breast cancer cells. Biomed Pharmacother 77:37–44. https://doi.org/10.1016/j.biopha.2015.11.005

    Article  CAS  PubMed  Google Scholar 

  55. Liu LM, Shen WF, Zhu ZH et al (2018) Combined inhibition of EGFR and c-ABL suppresses the growth of fulvestrant resistant breast cancer cells through miR-375-autophagy axis. Biochem Biophys Res Commun 498(3):559–565. https://doi.org/10.1016/j.bbrc.2018.03.019

    Article  CAS  PubMed  Google Scholar 

  56. Zhang FF, Wang BB, Long HL et al (2016) Decreased miR- 124–3p expression prompted breast cancer cell progression mainly by targeting BECLIN-1. Clin Lab 62(6):1139–1145. https://doi.org/10.7754/clin.lab.2015.151111

    Article  CAS  PubMed  Google Scholar 

  57. Pradhan AK, Talukdar S, Bhoopathi P, Shen X-N, Emdad L, Das SK et al (2017) mda-7/IL-24 mediates cancer cell-specific death via regulation of miR- 221 and the BECLIN-1 axis. Cancer Res 77:949–959

    Article  CAS  Google Scholar 

  58. Cheng Y, Li Z, Xie J, Wang P, Zhu J, Li Y et al (2018) MiRNA-224-5p inhibits autophagy in breast cancer cells via targeting smad4. Biochem Biophys Res Commun 506:793–798

    Article  CAS  Google Scholar 

  59. Chong ZX, Yeap SK, Ho WY (2021) Regulation of autophagy by microRNAs in human breast cancer. J Biomed Sci 28(1):1–18

    Article  Google Scholar 

  60. Lu D, Luo P, Wang Q, Ye Y, Wang B (2017) lncRNA PVT1 in cancer: a review and meta-analysis. Int J Clin Chem 474:1–7. https://doi.org/10.1016/j.cca.2017.08.038

    Article  CAS  Google Scholar 

  61. Liao W, Zhang Y (2020) MicroRNA-381 facilitates autophagy and apoptosis in prostate cancer cells via inhibiting the RELN-mediated PI3K/AKT/mTOR signaling pathway. Life Sci 254:117672. https://doi.org/10.1016/j.lfs.2020.117672

    Article  CAS  PubMed  Google Scholar 

  62. Clotaire DZJ, Zhang B, Wei N, Gao R, Zhao F, Wang Y et al (2016) MiR-26b inhibits autophagy by targeting ULK2 in prostate cancer cells. Biochem Biophys Res Commun 472(1):194–200. https://doi.org/10.1016/j.bbrc.2016.02.093

    Article  CAS  Google Scholar 

  63. Liu, P. F., Farooqi, A. A., Peng, S. Y., Yu, T. J., Dahms, H. U., Lee, C. H., et al. (2020, October). Regulatory effects of noncoding RNAs on the interplay of oxidative stress and autophagy in cancer malignancy and therapy. In Seminars in Cancer Biology. Academic Press. https://doi.org/10.1016/j.semcancer.2020.10.009

  64. Xiu D, Liu L, Cheng M, Sun X, Ma X (2020) Knockdown of lncRNA TUG1 enhances radiosensitivity of prostate cancer via the TUG1/miR-139-5p/SMC1A axis. Onco Targets Ther 13:2319. https://doi.org/10.2147/OTT.S236860

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Yang G, Yin H, Lin F, Gao S, Zhan K, Tong H et al (2020) Long noncoding RNA TUG1 regulates prostate cancer cell proliferation, invasion and migration via the Nrf2 signaling axis. Pathol-Res Practice 216(4):152851. https://doi.org/10.1016/j.prp.2020.152851

    Article  CAS  Google Scholar 

  66. Dong L, Ding H, Li Y, Xue D, Liu Y (2018) LncRNA TINCR is associated with clinical progression and serves as tumor suppressive role in prostate cancer. Cancer Manage Res 10:2799. https://doi.org/10.2147/CMAR.S170526

    Article  CAS  Google Scholar 

  67. Beaver LM, Kuintzle R, Buchanan A, Wiley MW, Glasser ST, Wong CP et al (2017) Long noncoding RNAs and sulforaphane: a target for chemoprevention and suppression of prostate cancer. J Nutr Biochem 42:72–83. https://doi.org/10.1016/j.jnutbio.2017.01.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Yang J, Hao T, Sun J, Wei P, Zhang H (2019) Long noncoding RNA GAS5 modulates α-Solanine-induced radiosensitivity by negatively regulating miR-18a in human prostate cancer cells. Biomed Pharmacother 112:108656. https://doi.org/10.1016/j.biopha.2019.108656

    Article  CAS  PubMed  Google Scholar 

  69. Chen C, Wang K, Wang Q, Wang X (2018) LncRNA HULC mediates radioresistance via autophagy in prostate cancer cells. Braz J Med Biol Res. https://doi.org/10.1590/1414-431X20187080

    Article  PubMed  PubMed Central  Google Scholar 

  70. Lu J, Zhong C, Luo J, Shu F, Lv D, Liu Z et al (2021) HnRNP-L-regulated circCSPP1/miR-520h/EGR1 axis modulates autophagy and promotes progression in prostate cancer. Mol Ther-Nucl Acids 26:927–944. https://doi.org/10.1016/j.omtn.2021.10.006

    Article  CAS  Google Scholar 

  71. Zhong C, Wu K, Wang S, Long Z, Yang T, Zhong W et al (2021) Autophagy-related circRNA evaluation reveals hsa_circ_0001747 as a potential favorable prognostic factor for biochemical recurrence in patients with prostate cancer. Cell Death Dis 12(8):1–12. https://doi.org/10.1038/s41419-021-04015-w

    Article  CAS  Google Scholar 

  72. Cai F, Li J, Zhang J, Huang S (2020) Knockdown of Circ_CCNB2 sensitizes prostate cancer to radiation through repressing autophagy by the miR-30b-5p/KIF18A axis. Cancer Biother Radiopharm. https://doi.org/10.1089/cbr.2019.3538

    Article  PubMed  Google Scholar 

  73. Borchardt H, Ewe A, Morawski M, Weirauch U, Aigner A (2021) miR24–3p activity after delivery into pancreatic carcinoma cell lines exerts profound tumor-inhibitory effects through distinct pathways of apoptosis and autophagy induction. Cancer Lett 503:174–184. https://doi.org/10.1016/j.canlet.2021.01.018

    Article  CAS  PubMed  Google Scholar 

  74. Gu DN, Jiang MJ, Mei Z, Dai JJ, Dai CY, Fang C et al (2017) microRNA-7 impairs autophagy-derived pools of glucose to suppress pancreatic cancer progression. Cancer Lett 400:69–78. https://doi.org/10.1016/j.canlet.2017.04.020

    Article  CAS  PubMed  Google Scholar 

  75. Ye ZQ, Zou CL, Chen HB, Jiang MJ, Mei Z, Gu DN (2020) MicroRNA-7 as a potential biomarker for prognosis in pancreatic cancer. Dis Markers. https://doi.org/10.1155/2020/2782101

    Article  PubMed  PubMed Central  Google Scholar 

  76. Huang L, Hu C, Cao H, Wu X, Wang R, Lu H et al (2018) MicroRNA-29c increases the chemosensitivity of pancreatic cancer cells by inhibiting USP22 mediated autophagy. Cell Physiol Biochem 47(2):747–758. https://doi.org/10.1159/000490027

    Article  CAS  PubMed  Google Scholar 

  77. Zhou C, Liang Y, Zhou L, Yan Y, Liu N, Zhang R et al (2021) TSPAN1 promotes autophagy flux and mediates cooperation between WNT-CTNNB1 signaling and autophagy via the MIR454-FAM83A-TSPAN1 axis in pancreatic cancer. Autophagy 17(10):3175–3195. https://doi.org/10.1080/15548627.2020.1826689

    Article  CAS  PubMed  Google Scholar 

  78. Wang ZC, Huang FZ, Xu HB, Sun JC, Wang CF (2019) MicroRNA-137 inhibits autophagy and chemosensitizes pancreatic cancer cells by targeting ATG5. Int J Biochem Cell Biol 111:63–71. https://doi.org/10.1016/j.biocel.2019.01.020

    Article  CAS  PubMed  Google Scholar 

  79. Wu Y, Tang Y, Xie S, Zheng X, Zhang S, Mao J et al (2020) Chimeric peptide supramolecular nanoparticles for plectin-1 targeted miRNA-9 delivery in pancreatic cancer. Theranostics 10(3):1151

    Article  CAS  Google Scholar 

  80. Huang F, Chen W, Peng J, Li Y, Zhuang Y, Zhu Z et al (2018) LncRNA PVT1 triggers Cyto-protective autophagy and promotes pancreatic ductal adenocarcinoma development via the miR-20a-5p/ULK1 Axis. Mol Cancer 17(1):1–16. https://doi.org/10.1186/s12943-018-0845-6

    Article  CAS  Google Scholar 

  81. Yang T, Shen P, Chen Q, Wu P, Yuan H, Ge W et al (2021) FUS-induced circRHOBTB3 facilitates cell proliferation via miR-600/NACC1 mediated autophagy response in pancreatic ductal adenocarcinoma. J Exp Clin Cancer Res 40(1):1–25. https://doi.org/10.1186/s13046-021-02063-w

    Article  CAS  Google Scholar 

  82. Wei DM, Jiang MT, Lin P, Yang H, Dang YW, Yu Q et al (2019) Potential ceRNA networks involved in autophagy suppression of pancreatic cancer caused by chloroquine diphosphate: a study based on differentially-expressed circRNAs, lncRNAs, miRNAs and mRNAs. Int J Oncol 54(2):600–626. https://doi.org/10.3892/ijo.2018.4660

    Article  CAS  PubMed  Google Scholar 

  83. Gou L, Zou H, Li B (2019) Long noncoding RNA MALAT1 knockdown inhibits progression of anaplastic thyroid carcinoma by regulating miR-200a-3p/FOXA1. Cancer Biol Ther 20(11):1355–1365. https://doi.org/10.1080/15384047.2019.1617567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Abraham D, Jackson N, Gundara JS, Zhao J, Gill AJ, Delbridge L et al (2011) MicroRNA profiling of sporadic and hereditary medullary thyroid cancer identifies predictors of nodal metastasis, prognosis, and potential therapeutic targets. Clin Cancer Res 17(14):4772–4781. https://doi.org/10.1158/1078-0432.CCR-11-0242

    Article  CAS  PubMed  Google Scholar 

  85. Gundara JS, Zhao J, Gill AJ, Lee JC, Delbridge L, Robinson BG et al (2015) Noncoding RNA blockade of autophagy is therapeutic in medullary thyroid cancer. Cancer Med 4(2):174–182. https://doi.org/10.1002/cam4.355

    Article  CAS  PubMed  Google Scholar 

  86. Zhang Y, Yang WQ, Zhu H, Qian YY, Zhou L, Ren YJ et al (2014) Regulation of autophagy by miR-30d impacts sensitivity of anaplastic thyroid carcinoma to cisplatin. Biochem Pharmacol 87(4):562–570. https://doi.org/10.1016/j.bcp.2013.12.004

    Article  CAS  PubMed  Google Scholar 

  87. Liu J, Feng L, Zhang H, Zhang J, Zhang Y, Li S et al (2018) Effects of miR-144 on the sensitivity of human anaplastic thyroid carcinoma cells to cisplatin by autophagy regulation. Cancer Biol Ther 19(6):484–496. https://doi.org/10.1080/15384047.2018.1433502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Wang S, Wu J, Ren J, Vlantis AC, Li MY, Liu S, Ng E, Chan A, Luo DC, Liu Z, Guo W, Xue L, Ng SK, van Hasselt CA, Tong M, Chen GG (2018) MicroRNA-125b interacts with Foxp3 to induce autophagy in thyroid cancer. Mol Ther 26(9):2295–2303. https://doi.org/10.1016/j.ymthe.2018.06.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Liu H, Chen X, Lin T, Chen X, Yan J, Jiang S (2019) MicroRNA-524-5p suppresses the progression of papillary thyroid carcinoma cells via targeting on FOXE1 and ITGA3 in cell autophagy and cycling pathways. J Cell Physiol 234(10):18382–18391. https://doi.org/10.1002/jcp.28472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Yang LX, Wu J, Guo ML, Zhang Y, Ma SG (2019) Suppression of long non-coding RNA TNRC6C-AS1 protects against thyroid carcinoma through DNA demethylation of STK4 via the Hippo signalling pathway. Cell Prolif 52(3):e12564. https://doi.org/10.1111/cpr.12564

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Peng X, Ji C, Tan L, Lin S, Zhu Y, Long M, Luo D, Li H (2020) Long non-coding RNA TNRC6C-AS1 promotes methylation of STK4 to inhibit thyroid carcinoma cell apoptosis and autophagy via Hippo signalling pathway. J Cell Mol Med 24(1):304–316. https://doi.org/10.1111/jcmm.14728

    Article  CAS  PubMed  Google Scholar 

  92. Mila G, Manicardi V, Federica T, Elisabetta S, Riccardo B, Gloria M et al (2021) Linc00941 is a novel TGFβ target that primes papillary thyroid cancer metastatic behavior by regulating the expression of Cadherin. Thyroid. https://doi.org/10.1089/thy.2020.0001

    Article  Google Scholar 

  93. Zhao Y, Zhao L, Li J, Zhong L (2019) Silencing of long noncoding RNA RP11-476D10. 1 enhances apoptosis and autophagy while inhibiting proliferation of papillary thyroid carcinoma cells via microRNA-138-5p-dependent inhibition of LRRK2. J Cell Physiol 234(11):20980–20991. https://doi.org/10.1002/jcp.28702

    Article  CAS  PubMed  Google Scholar 

  94. Wang HH, Ma JN, Zhan XR (2021) Circular RNA Circ_0067934 attenuates ferroptosis of thyroid cancer cells by miR-545–3p/SLC7A11 signaling. Front Endocrinol. https://doi.org/10.3389/fendo.2021.670031

    Article  Google Scholar 

  95. Liu F, Zhang J, Qin L, Yang Z, Xiong J, Zhang Y et al (2018) Circular RNA EIF6 (Hsa_circ_0060060) sponges miR-144–3p to promote the cisplatin-resistance of human thyroid carcinoma cells by autophagy regulation. Aging 10(12):3806. https://doi.org/10.18632/aging.101674

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Shi YP, Liu GL, Li S, Liu XL (2020) miR-17-5p knockdown inhibits proliferation, autophagy and promotes apoptosis in thyroid cancer via targeting PTEN. Neoplasma 67(2):249–258. https://doi.org/10.4149/neo_2019_190110N29

    Article  CAS  PubMed  Google Scholar 

  97. Gundara JS, Zhao J, Gill AJ, Lee JC, Delbridge L, Robinson BG, McLean C, Serpell J, Sidhu SB (2015) Noncoding RNA blockade of autophagy is therapeutic in medullary thyroid cancer. Cancer Med 4(2):174–182. https://doi.org/10.1002/cam4.355

    Article  CAS  PubMed  Google Scholar 

  98. Zhao Y, Zhao L, Li J, Zhong L (2019) Silencing of long noncoding RNA RP11–476D10.1 enhances apoptosis and autophagy while inhibiting proliferation of papillary thyroid carcinoma cells via microRNA-138–5p-dependent inhibition of LRRK2. J Cell Physiol 234(11):20980–20991. https://doi.org/10.1002/jcp.28702

    Article  CAS  PubMed  Google Scholar 

  99. Liu J, Feng L, Zhang H, Zhang J, Zhang Y, Li S, Qin L, Yang Z, Xiong J (2018) Effects of miR-144 on the sensitivity of human anaplastic thyroid carcinoma cells to cisplatin by autophagy regulation. Cancer Biol Ther 19(6):484–496. https://doi.org/10.1080/15384047.2018.1433502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Wen D, Liu WL, Lu ZW, Cao YM, Ji QH, Wei WJ (2021) SNHG9, a papillary thyroid cancer cell exosome-enriched lncRNA, inhibits cell autophagy and promotes cell apoptosis of normal thyroid epithelial cell Nthy-ori-3 through YBOX3/P21 pathway. Front Oncol 11:647034. https://doi.org/10.3389/fonc.2021.647034

    Article  PubMed  PubMed Central  Google Scholar 

  101. Peng D, Li W, Zhang B, Liu X (2021) Overexpression of lncRNA SLC26A4-AS1 inhibits papillary thyroid carcinoma progression through recruiting ETS1 to promote ITPR1-mediated autophagy. J Cell Mol Med 25(17):8148–8158. https://doi.org/10.1111/jcmm.16545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Chen Y, Zhou J, Wu X, Huang J, Chen W, Liu D, Zhang J, Huang Y, Xue W (2020) miR-30a-3p inhibits renal cancer cell invasion and metastasis through targeting ATG12. Transl Androl Urol 9(2):646–653. https://doi.org/10.21037/tau.2019.12.10

    Article  PubMed  PubMed Central  Google Scholar 

  103. Liu X, Zhong L, Li P, Zhao P (2020) MicroRNA-100 enhances autophagy and suppresses migration and invasion of renal cell carcinoma cells via disruption of NOX4-dependent mTOR pathway. Clin Transl Sci. https://doi.org/10.1111/cts.12798

    Article  PubMed  PubMed Central  Google Scholar 

  104. Zheng B, Zhu H, Gu D, Pan X, Qian L, Xue B, Yang D, Zhou J, Shan Y (2015) MiRNA-30a-mediated autophagy inhibition sensitizes renal cell carcinoma cells to sorafenib. Biochem Biophys Res Commun 459(2):234–239. https://doi.org/10.1016/j.bbrc.2015.02.084

    Article  CAS  PubMed  Google Scholar 

  105. Takai T, Tsujino T, Yoshikawa Y, Inamoto T, Sugito N, Kuranaga Y, Heishima K, Soga T, Hayashi K, Miyata K, Kataoka K, Azuma H, Akao Y (2019) Synthetic miR-143 exhibited an anti-cancer effect via the downregulation of K-RAS networks of renal cell cancer cells in vitro and in vivo. Mol Ther 27(5):1017–1027. https://doi.org/10.1016/j.ymthe.2019.03.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Mikhaylova O, Stratton Y, Hall D, Kellner E, Ehmer B, Drew AF, Gallo CA, Plas DR, Biesiada J, Meller J, Czyzyk-Krzeska MF (2012) VHL-regulated MiR-204 suppresses tumor growth through inhibition of LC3B-mediated autophagy in renal clear cell carcinoma. Cancer Cell 21(4):532–546. https://doi.org/10.1016/j.ccr.2012.02.019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Yan L, Liu G, Cao H, Zhang H, Shao F (2019) Hsa_circ_0035483 sponges hsa-miR-335 to promote the gemcitabine-resistance of human renal cancer cells by autophagy regulation. Biochem Biophys Res Commun 519(1):172–178. https://doi.org/10.1016/j.bbrc.2019.08.093

    Article  CAS  PubMed  Google Scholar 

  108. Jin Y, Huang R, Xia Y, Huang C, Qiu F, Pu J, He X, Zhao X (2020) Long noncoding RNA KIF9-AS1 regulates transforming growth factor-β and autophagy signaling to enhance renal cell carcinoma chemoresistance via microRNA-497-5p. DNA Cell Biol 39(7):1096–1103. https://doi.org/10.1089/dna.2020.5453

    Article  CAS  PubMed  Google Scholar 

  109. Shao Q, Wang Q, Wang J (2019) LncRNA SCAMP1 regulates ZEB1/JUN and autophagy to promote pediatric renal cell carcinoma under oxidative stress via miR-429. Biomed Pharmacother 120:109460. https://doi.org/10.1016/j.biopha.2019.109460

    Article  CAS  PubMed  Google Scholar 

  110. Li D, Li C, Chen Y, Teng L, Cao Y, Wang W, Pan H, Xu Y, Yang D (2020) LncRNA HOTAIR induces sunitinib resistance in renal cancer by acting as a competing endogenous RNA to regulate autophagy of renal cells. Cancer Cell Int 20:338. https://doi.org/10.1186/s12935-020-01419-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Su Y, Lu J, Chen X, Liang C, Luo P, Qin C, Zhang J (2019) Long non-coding RNA HOTTIP affects renal cell carcinoma progression by regulating autophagy via the PI3K/Akt/Atg13 signaling pathway. J Cancer Res Clin Oncol 145(3):573–588. https://doi.org/10.1007/s00432-018-2808-0

    Article  CAS  PubMed  Google Scholar 

  112. Gui CP, Cao JZ, Tan L, Huang Y, Tang YM, Li PJ, Chen YH, Lu J, Yao HH, Chen ZH, Pan YH, Ye YL, Qin ZK, Chen W, Wei JH, Luo JH (2021) A panel of eight autophagy-related long non-coding RNAs is a good predictive parameter for clear cell renal cell carcinoma. Genomics 113(2):740–754. https://doi.org/10.1016/j.ygeno.2021.01.016

    Article  CAS  PubMed  Google Scholar 

  113. Sahin Lacin EE, Karakas Y, Yalcin S (2015) Metastatic medullary thyroid cancer: a dramatic response to a systemic chemotherapy (temozolomide and capecitabine) regimen. OncoTargets Ther 8:1039. https://doi.org/10.2147/OTT.S82906

    Article  Google Scholar 

Download references

Funding

This study was not funded by any authority.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satarupa Banerjee.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barnwal, S.K., Bendale, H. & Banerjee, S. Non-coding RNAs associated with autophagy and their regulatory role in cancer therapeutics. Mol Biol Rep 49, 7025–7037 (2022). https://doi.org/10.1007/s11033-022-07517-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-022-07517-8

Keywords

Navigation