Silencing of ZFP36L2 increases sensitivity to temozolomide through G2/M cell cycle arrest and BAX mediated apoptosis in GBM cells


Despite the advancements in primary brain tumour diagnoses and treatments, the mortality rate remains high, particularly in glioblastoma (GBM). Chemoresistance, predominantly in recurrent cases, results in decreased mean survival of patients with GBM. We aimed to determine the chemosensitisation and oncogenic characteristics of zinc finger protein 36–like 2 (ZFP36L2) in LN18 GBM cells via RNA interference (RNAi) delivery. We conducted a meta-analysis of microarray datasets and RNAi screening using pooled small interference RNA (siRNA) to identify the druggable genes responsive to GBM chemosensitivity. Temozolomide-resistant LN18 cells were used to evaluate the effects of gene silencing on chemosensitisation to the sub-lethal dose (1/10 of the median inhibitory concentration [IC50]) of temozolomide. ZFP36L2 protein expression was detected by western blotting. Cell viability, proliferation, cell cycle and apoptosis assays were carried out using commercial kits. A human apoptosis array kit was used to determine the apoptosis pathway underlying chemosensitisation by siRNA against ZFP36L2 (siZFP36L2). Statistical analyses were performed using one-way analysis of variance; p > 0.05 was considered significant. The meta-analysis and RNAi screening identified ZFP36L2 as a potential marker of GBM. ZFP36L2 knockdown significantly induced apoptosis (p < 0.05). Moreover, ZFP36L2 inhibition led to increased cell cycle arrest and decreased cell proliferation. Downstream analysis showed that the sub-lethal dose of temozolomide and siZFP26L2 caused major upregulation of BCL2-associated X, apoptosis regulator (BAX). ZFP36L2 has oncogenic and chemosensitive characteristics and may play an important role in gliomagenesis through cell proliferation, cell cycle arrest and apoptosis. This suggests that RNAi combined with chemotherapy treatment such as temozolomide may be a potential GBM therapeutic intervention in the future.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5


  1. 1.

    Urbanska K, Sokolowska J, Szmidt M, Sysa P (2014) Glioblastoma multiforme - an overview. Wspolczesna Onkol 18:307–312

    Article  Google Scholar 

  2. 2.

    Davis ME (2016) Glioblastoma: overview of disease and treatment. Clin J Oncol Nurs 20:1–8

    Article  Google Scholar 

  3. 3.

    Kakkar A, Suri V, Jha P, Srivastava A, Sharma V, Pathak P, Sharma MC, Sharma MS, Kale SS, Chosdol K, Phalak M, Sarkar C (2011) Loss of heterozygosity on chromosome 10q in glioblastomas, and its association with other genetic alterations and survival in Indian patients. Neurol India 59:254–261

    PubMed  Article  Google Scholar 

  4. 4.

    Kuga D, Mizoguchi M, Guan Y, Hata N, Yoshimoto K, Shono T, Suzuki SO, Kukita Y, Tahira T, Nagata S, Sasaki T, Hayashi K (2008) Prevalence of copy-number neutral LOH in glioblastomas revealed by genomewide analysis of laser-microdissected tissues. Neuro Oncol 10:995–1003

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  5. 5.

    Navarro L, Gil-Benso R, Megías J, Muñoz-Hidalgo L, San-Miguel T, Callaghan RC, González-Darder JM, López-Ginés C, Cerdá-Nicolás MJ (2015) Alteration of major vault protein in human glioblastoma and its relation with EGFR and PTEN status. Neuroscience 297:243–251

    CAS  PubMed  Article  Google Scholar 

  6. 6.

    Lee SY (2016) Temozolomide resistance in glioblastoma multiforme. Genes Dis 3:198–210

    PubMed  PubMed Central  Article  Google Scholar 

  7. 7.

    Khan RB, Raizer JJ, Malkin MG, Bazylewicz KA, Abrey LE (2002) A phase II study of extended low-dose temozolomide in recurrent malignant gliomas. Neuro Oncol 4:39–43

  8. 8.

    Goellner EM, Grimme B, Brown AR, Lin YC, Wang XH, Sugrue KF, Mitchell L, Trivedi RN, Tang JB, Sobol RW (2011) Overcoming temozolomide resistance in glioblastoma via dual inhibition of NAD+ biosynthesis and base excision repair. Cancer Res 71:2308–2317

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  9. 9.

    Krakstad C, Chekenya M (2010) Survival signalling and apoptosis resistance in glioblastomas: opportunities for targeted therapeutics. Mol Cancer 9:135

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  10. 10.

    Wang Q, Du J, Xu B, Xu L, Wang X, Liu J, Wang J (2016) Silence of bFGF enhances chemosensitivity of glioma cells to temozolomide through the MAPK signal pathway. Acta Biochim Biophys Sin Shanghai 48:501–508

  11. 11.

    Zhang Z, Wang Y, Chen J, Tan Q, Xie C, Li C, Zhan W, Wang M (2016) Silencing of histone deacetylase 2 suppresses malignancy for proliferation, migration, and invasion of glioblastoma cells and enhances temozolomide sensitivity. Cancer Chemother Pharmacol 78:1289–1296

    CAS  PubMed  Article  Google Scholar 

  12. 12.

    Wang Q, Qian J, Wang J, Luo C, Chen J, Hu G, Lu Y (2013) Knockdown of RLIP76 expression by RNA interference inhibits invasion, induces cell cycle arrest, and increases chemosensitivity to the anticancer drug temozolomide in glioma cells. J Neuro-Oncol 112:73–82

    CAS  Article  Google Scholar 

  13. 13.

    Carrick DM, Blackshear PJ (2007) Comparative expression of tristetraprolin (TTP) family member transcripts in normal human tissues and cancer cell lines. Arch Biochem Biophys 462:278–285

    CAS  PubMed  Article  Google Scholar 

  14. 14.

    Sanduja S, Blanco FF, Young LE, Kaza V, Dixon DA (2012) The role of tristetraprolin in cancer and inflammation. Front Biosci Landmark Ed 17:174–188

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  15. 15.

    Lai WS, Carballo E, Strum JR, Kennington EA, Phillips RS, Blackshear PJ (1999) Evidence that tristetraprolin binds to AU-rich elements and promotes the deadenylation and destabilization of tumor necrosis factor alpha mRNA. Mol Cell Biol 19:4311–4323

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  16. 16.

    Taylor GA, Lai WS, Oakey RJ, Seldin MF, Shows TB, Eddy RL, Blackshear PJ (1991) The human TTP protein: sequence, alignment with related proteins, and chromosomal localization of the mouse and human genes. Nucleic Acids Res 19:3454

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  17. 17.

    Jackson RS, Cho YJ, Liang P (2006) TIS11D is a candidate pro-apoptotic p53 target gene. Cell Cycle 5:2889–2893

    CAS  PubMed  Article  Google Scholar 

  18. 18.

    Suk F-M, Chen Y-T, Liang Y-C (2017) Abstract 3475: inhibitory effects of ZFP36L1 and ZFP36L2 on the cell proliferation in human colorectal cancer cells. Cancer Res 77:3475 LP

    Google Scholar 

  19. 19.

    Kori M, Gov E, Arga KY (2016) Molecular signatures of ovarian diseases: insights from network medicine perspective. Syst Biol Reprod Med 62:266–282

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  20. 20.

    Chou H-L, Yao C-T, Su S-L, Lee C-Y, Hu K-Y, Terng H-J, Shih Y-W, Chang Y-T, Lu Y-F, Chang C-W, Wahlqvist ML, Wetter T, Chu C-M (2013) Gene expression profiling of breast cancer survivability by pooled cDNA microarray analysis using logistic regression, artificial neural networks and decision trees. BMC Bioinformatics 14:100

    PubMed  PubMed Central  Article  Google Scholar 

  21. 21.

    Che Mat M, Abdul Murad N, Ibrahim K, Mohd Mokhtar N, Wan Ngah W, Harun R, Jamal R (2016) Silencing of PROS1 induces apoptosis and inhibits migration and invasion of glioblastoma multiforme cells. Int J Oncol 2359–2366

  22. 22.

    Yonemori K, Seki N, Kurahara H, Osako Y, Idichi T, Arai T, Koshizuka K, Kita Y, Maemura K, Natsugoe S (2017) ZFP36L2 promotes cancer cell aggressiveness and is regulated by antitumor microRNA-375 in pancreatic ductal adenocarcinoma. Cancer Sci 108:124–135

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  23. 23.

    Johnson BA, Stehn JR, Yaffe MB, Keith Blackwell T (2002) Cytoplasmic localization of tristetraprolin involves 14-3-3-dependent and -independent mechanisms. J Biol Chem 277:18029–18036

    CAS  PubMed  Article  Google Scholar 

  24. 24.

    Brennan SE, Kuwano Y, Alkharouf N, Blackshear PJ, Gorospe M, Wilson GM (2009) The mRNA-destabilizing protein tristetraprolin is suppressed in many cancers, altering tumorigenic phenotypes and patient prognosis. Cancer Res 69:5168–5176

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  25. 25.

    Viel T, Monfared P, Schelhaas S, Fricke IB, Kuhlmann MT, Fraefel C, Jacobs AH (2013) Optimizing glioblastoma temozolomide chemotherapy employing lentiviral-based anti-MGMT shRNA technology Mol Ther 21:570–579

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  26. 26.

    Cabodevilla AG, Sánchez-Caballero L, Nintou E, Boiadjieva VG, Picatoste F, Gubern A, Claro E (2013) Cell survival during complete nutrient deprivation depends on lipid droplet-fueled β- oxidation of fatty acids. J Biol Chem 288:27777–27788

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  27. 27.

    Combs SE, Schulz-Ertner D, Roth W, Herold-Mende C, Debus J, Weber KJ (2007) In vitro responsiveness of glioma cell lines to multimodality treatment with radiotherapy, temozolomide, and epidermal growth factor receptor inhibition with cetuximab. Int J Radiat Oncol Biol Phys 68:873–882

    CAS  PubMed  Article  Google Scholar 

  28. 28.

    Happold C, Roth P, Wick W, Schmidt N, Florea AM, Silginer M, Reifenberger G, Weller M (2012) Distinct molecular mechanisms of acquired resistance to temozolomide in glioblastoma cells. J Neurochem 122:444–455

    CAS  PubMed  Article  Google Scholar 

  29. 29.

    Barazzuol L, Jena R, Burnet NG, Meira LB, Jeynes JCG, Kirkby KJ, Kirkby NF (2013) Evaluation of poly (ADP-ribose) polymerase inhibitor ABT-888 combined with radiotherapy and temozolomide in glioblastoma. Radiat Oncol 8:65

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  30. 30.

    Qiu ZK, Shen D, Chen YS, Yang QY, Guo CC, Feng BH, Chen ZP (2014) Enhanced MGMT expression contributes to temozolomide resistance in glioma stem-like cells. Chin J Cancer 33:115–122

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  31. 31.

    Gerber DE, Grossman SA, Zeltzman M, Parisi MA, Kleinberg L (2007) The impact of thrombocytopenia from temozolomide and radiation in newly diagnosed adults with high-grade gliomas. Neuro Oncol 9:47–52

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  32. 32.

    von Mering C, Jensen LJ, Snel B, Hooper SD, Krupp M, Foglierini M, Jouffre N, Huynen MA, Bork P (2005) STRING: known and predicted protein-protein associations, integrated and transferred across organisms. Nucleic Acids Res 33:433–437

    Article  CAS  Google Scholar 

  33. 33.

    Emmanouilidi A, Falasca M (2017) Targeting PDK1 for chemosensitization of cancer cells. Cancers (Basel) 9:1–25

    Article  CAS  Google Scholar 

  34. 34.

    Pen A, Moreno MJ, Martin J, Stanimirovic DB (2007) Molecular markers of extracellular matrix remodeling in glioblastoma vessels: microarray study of laser-captured glioblastoma vessels. Glia 55:559–572

    PubMed  Article  Google Scholar 

  35. 35.

    Prenzler F, Fragasso A, Schmitt A, Munz B (2016) Functional analysis of ZFP36 proteins in keratinocytes. Eur J Cell Biol 95:277–284

    CAS  PubMed  Article  Google Scholar 

  36. 36.

    Adams JM, Cory S (2007) The Bcl-2 apoptotic switch in cancer development and therapy. Oncogene 26:1324–1337

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  37. 37.

    Galvan V, Brandimarti R, Munger J, Roizman B (2000) Bcl-2 blocks a caspase-dependent pathway of apoptosis activated by herpes simplex virus 1 infection in HEp-2 cells. J Virol 74:1931–1938

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  38. 38.

    Youle RJ, Strasser A (2008) The BCL-2 protein family: opposing activities that mediate cell death. Nat Rev Mol Cell Biol 9:47–59

    CAS  PubMed  Article  Google Scholar 

  39. 39.

    Westphal D, Kluck RM, Dewson G (2014) Building blocks of the apoptotic pore: how bax and bak are activated and oligomerize during apoptosis. Cell Death Differ 21:196–205

    CAS  PubMed  Article  Google Scholar 

  40. 40.

    Liu X, Kim CN, Yang J, Jemmerson R, Wang X (1996) Induction of apoptotic program in cell-free extracts: requirement for dATP and cytochrome c. Cell 86:147–157

    CAS  Article  Google Scholar 

  41. 41.

    Ogino A, Sano E, Ochiai Y, Yamamuro S, Tashiro S, Yachi K, Ohta T, Fukushima T, Okamoto Y, Tsumoto K, Ueda T, Yoshino A, Katayama Y (2014) Efficacy of ribavirin against malignant glioma cell lines. Oncol Lett 8:2469–2474

    PubMed  PubMed Central  Article  Google Scholar 

  42. 42.

    Guo Y, Ziesch A, Hocke S, Kampmann E, Ochs S, De Toni EN, Göke B, Gallmeier E (2015) Overexpression of heat shock protein 27 (HSP27) increases gemcitabine sensitivity in pancreatic cancer cells through S-phase arrest and apoptosis. J Cell Mol Med 19:340–350

    CAS  PubMed  Article  Google Scholar 

  43. 43.

    Shinoura N, Yoshida Y, Asai A, Kirino T, Hamada H (1999) Relative level of expression of Bax and Bcl-X(L) determines the cellular fate of apoptosis/necrosis induced by the overexpression of Bax. Oncogene 18:5703–5713

    CAS  PubMed  Article  Google Scholar 

  44. 44.

    Vogelbaum MA, Tong JX, Perugu R, Gutmann DH, Rich KM (1999) Overexpression of bax in human glioma cell lines. Surg Neurol Neurosurg J 483–489

  45. 45.

    Laptenko O, Prives C (2006) Transcriptional regulation by p53: one protein, many possibilities. Cell Death Differ 13:951–961

    CAS  PubMed  Article  Google Scholar 

Download references


The study was funded by the Higher Institution Centre of Excellence (HICoE) (Grant No. JJ-008-2011) from the Ministry of Higher Education, Malaysia.

Author information




MFCM: Performed all experiments and wrote the first draft of the manuscript; EAMH: contributed equally to the writing of the manuscript; NAAM and RH: supervised MFCM and provided critical comments on the manuscript; KI: data analysis; RJ: provided the HICoE grant and critical comments on the manuscript.

Corresponding authors

Correspondence to Roslan Harun or Rahman Jamal.

Ethics declarations

Conflict of interest

All authors have declared that no competing interest exists.

Ethical approval

This article does not contain any studies in relation to human participants or specimens, nor involving animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Electronic supplementary material 1 (DOCX 45 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Che Mat, M.F., Mohamad Hanif, E.A., Abdul Murad, N.A. et al. Silencing of ZFP36L2 increases sensitivity to temozolomide through G2/M cell cycle arrest and BAX mediated apoptosis in GBM cells. Mol Biol Rep (2021).

Download citation


  • Glioblastoma
  • RNAi screening
  • Temozolomide
  • Chemosensitisation
  • ZFP36L2