Identification of 5S and 45S rDNA sites in Chrysanthemum species by using oligonucleotide fluorescence in situ hybridization (Oligo-FISH)

Abstract

Fluorescence in situ hybridization (FISH) is a conventional method used to visualize the distribution of DNA elements within a genome. To examine the relationships within the Chrysanthemum genus, ribosomal DNA (rDNA), a popular cytogenetic marker, was utilized as a probe for FISH within this genus. Based on the genome data of Chrysanthemum nankingense, C. seticuspe and its allied genera in the Compositae(Asteraceae), we explored rDNA sequences to design oligonucleotide probes and perform oligonucleotide fluorescence in situ hybridization (Oligo-FISH) in eight Chrysanthemum accessions. The results showed that the majority of 5S rDNA signals were located in subterminal chromosome regions and that the number of 5S rDNA sites might be tightly associated with ploidy. For 45S rDNA sites, the number and intensity of signals differed from those of previously investigated Chrysanthemum resources. These findings may provide an optimally reliable method of examining the chromosome composition and structural variation of Chrysanthemum and its related species and allow researchers to understand the evolutionary history and phylogenetic relationships of Chrysanthemum.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. 1.

    Su J, Jiang J, Zhang F, Liu Y, Ding L, Chen S, Chen F (2019) Current achievements and future prospects in the genetic breeding of chrysanthemum: a review. Hortic Res 6:109

    PubMed  PubMed Central  Google Scholar 

  2. 2.

    Zhang Y, Zhu M, Dai S (2013) Analysis of karyotype diversity of 40 Chinese chrysanthemum cultivars. J Syst Evol 51:335–352

    Google Scholar 

  3. 3.

    Zhang F, Chen S, Chen F, Fang W, Chen Y, Li F (2011) SRAP-based mapping and QTL detection for inflorescence-related traits in chrysanthemum (Dendranthema morifolium). Mol Breeding 27:11–23

    CAS  Google Scholar 

  4. 4.

    Ohashi H, Yonekura K (2004) New combinations in Chrysanthemum (Compositae-Anthemideae) of Asia with a list of Japanese species. J Jpn Bot 79:186–195

    Google Scholar 

  5. 5.

    Hirakawa H et al (2019) De novo whole-genome assembly in Chrysanthemum seticuspe, a model species of Chrysanthemums, and its application to genetic and gene discovery analysis. DNA Res 26:195–203

    CAS  PubMed  PubMed Central  Google Scholar 

  6. 6.

    Li C, Chen S, Chen F, Li J, Fang W (2011) Cytogenetic study of three edible chrysanthemum cultivars. Genetika+ 47:199–205

    PubMed  Google Scholar 

  7. 7.

    Garcia S, Kovarik A, Leitch AR, Garnatje T (2017) Cytogenetic features of rRNA genes across land plants: analysis of the plant rDNA database. Plant J 89:1020–1030

    CAS  PubMed  Google Scholar 

  8. 8.

    Roa F, Guerra M (2012) Distribution of 45S rDNA sites in chromosomes of plants: structural and evolutionary implications. Bmc Evol Biol 12:225

    CAS  PubMed  PubMed Central  Google Scholar 

  9. 9.

    Abd El-Twab MH, Kondo K (2012) Physical mapping of 5S and 45S rDNA in Chrysanthemum and related genera of the Anthemideae by FISH, and species relationships. J Genet 91:245–249

    PubMed  Google Scholar 

  10. 10.

    Cuyacot AR, Lim KB, Kim HH, Hwang YJ (2017) Chromosomal characterization based on repetitive DNA distribution in a tetraploid cytotype of Chrysanthemum zawadskii. Hortic Environ Biote 58:488–494

    CAS  Google Scholar 

  11. 11.

    Cuyacot AR et al (2016) The chromosomal distribution of repetitive DNA sequences in Chrysanthemum boreale revealed a characterization in its genome. Sci Hortic 198:438–444

    CAS  Google Scholar 

  12. 12.

    Qi X, Zhang F, Guan Z, Wang H, Jiang J, Chen S, Chen F (2015) Localization of 45S and 5S rDNA sites and karyotype of Chrysanthemum and its related genera by fluorescent in situ hybridization. Biochem Syst Ecol 62:164–172

    CAS  Google Scholar 

  13. 13.

    She C, Jiang X (2015) Karyotype analysis of Lablab purpureus (L.) Sweet using fluorochrome banding and fluorescence in situ hybridisation with rDNA Probes. Czech J Genet Plant 51:110–116

    CAS  Google Scholar 

  14. 14.

    Abd El-Twab MH, Kondo K (2003) Physical mapping of 45S rDNA loci by fluorescent in situ hybridization and Evolution among polyploid Dendranthema species. Chromosome Sci 7:71–76

    CAS  Google Scholar 

  15. 15.

    Abd El-Twab MH, Kondo K (2006) FISH physical mapping of 5S, 45S and Arabidopsis-type telomere sequence repeats in Chrysanthemum zawadskii showing intra-chromosomal variation and complexity in nature. Chromosome Botany 1:1–5

    Google Scholar 

  16. 16.

    Soltis PS, Soltis DE, Wolf PG, Nickrent DL, Chaw SM, Chapman RL (1999) The phylogeny of land plants inferred from 18S rDNA sequences: pushing the limits of rDNA signal? Mol Biol Evol 16:1774–1784

    CAS  PubMed  Google Scholar 

  17. 17.

    Waminal NE, Pellerin RJ, Kim NS, Jayakodi M, Park JY, Yang TJ, Kim HH (2018) Rapid and efficient FISH using pre-labeled oligomer probes. Sci Rep 8:8224

    PubMed  PubMed Central  Google Scholar 

  18. 18.

    Sastri DC, Hilu K, Appels R, Lagudah ES, Playford J, Baum BR (1992) An overview of evolution in plant 5s-DNA. Plant Syst Evol 183:169–181

    CAS  Google Scholar 

  19. 19.

    Baum BR, Bailey LG, Belyayev A, Raskina O, Nevo E (2004) The utility of the nontranscribed spacer of 5S rDNA units grouped into unit classes assigned to haplomes – a test on cultivated wheat and wheat progenitors. Genome 47:590–599

    CAS  PubMed  Google Scholar 

  20. 20.

    Baum BR, Edwards T, Johnson DA (2008) Loss of 5S rDNA units in the evolution of Agropyron, Pseudoroegneria, and Douglasdeweya. Genome 51:589–598

    CAS  PubMed  Google Scholar 

  21. 21.

    Baum BR, Edwards T, Mamuti M, Johnson DA (2012) Phylogenetic relationships among the polyploid and diploid Aegilops species inferred from the nuclear 5S rDNA sequences (Poaceae: Triticeae). Genome 55:177–193

    CAS  PubMed  Google Scholar 

  22. 22.

    Won SY, Hwang YJ, Jung JA, Kim JS, Kang SH, Sohn SH (2018) Identification of repetitive DNA sequences in the Chrysanthemum boreale genome. Sci Hortic 236:238–243

    CAS  Google Scholar 

  23. 23.

    Gerlach WL, Bedbrook JR (1979) Cloning and characterization of ribosomal RNA genes from wheat and barley. Nucleic Acids Res 7(7):1869–1885

    CAS  PubMed  PubMed Central  Google Scholar 

  24. 24.

    Braz GT et al (2018) Comparative oligo-FISH mapping: An efficient and powerful methodology to reveal karyotypic and chromosomal evolution. Genetics 208:513–523

    CAS  PubMed  Google Scholar 

  25. 25.

    Choi H-I et al (2014) Major repeat components covering one-third of the ginseng (Panax ginseng C.A. Meyer) genome and evidence for allotetraploidy. Plant J 77:906–916

    CAS  PubMed  Google Scholar 

  26. 26.

    Jiang J (2019) Fluorescence in situ hybridization in plants: recent developments and future applications. Chromosome Res 27:153–165

    CAS  PubMed  Google Scholar 

  27. 27.

    Meng Z et al (2020) Characterization of a Saccharum spontaneum with a basic chromosome number of x = 10 provides new insights on genome evolution in genus Saccharum. Theor Appl Genet 133:187–199

    PubMed  Google Scholar 

  28. 28.

    Xin H, Zhang T, Wu Y, Zhang W, Zhang P, Xi M, Jiang J (2020) An extraordinarily stable karyotype of the woody Populus species revealed by chromosome painting. Plant J 101:253–264

    CAS  PubMed  Google Scholar 

  29. 29.

    Tang S et al (2018) Developing new oligo probes to distinguish specific chromosomal segments and the A, B, D genomes of Wheat (Triticum aestivum L) using ND-FISH. Front Plant Sci 9:1104

    PubMed  PubMed Central  Google Scholar 

  30. 30.

    Albert PS et al (2019) Whole-chromosome paints in maize reveal rearrangements, nuclear domains, and chromosomal relationships. Proc Natl Acad Sci USA 116:1679–1685

    CAS  PubMed  Google Scholar 

  31. 31.

    do Vale Martins L, et al (2019) Meiotic crossovers characterized by haplotype-specific chromosome painting in maize. Nat Commun 10:4604

    Google Scholar 

  32. 32.

    Du P et al (2018) High-resolution chromosome painting with repetitive and single-copy oligonucleotides in Arachis species identifies structural rearrangements and genome differentiation. BMC Plant Biol 18:240

    CAS  PubMed  PubMed Central  Google Scholar 

  33. 33.

    Schmidt T, Heitkam T, Liedtke S, Schubert V, Menzel G (2019) Adding color to a century-old enigma: multi-color chromosome identification unravels the autotriploid nature of saffron (Crocus sativus) as a hybrid of wild Crocus cartwrightianus cytotypes. New Phytol 222:1965–1980

    CAS  PubMed  Google Scholar 

  34. 34.

    de Souza TB, Gaeta ML, Martins C, Vanzela ALL (2020) IGS sequences in Cestrum present AT- and GC-rich conserved domains, with strong regulatory potential for 5S rDNA. Mol Biol Rep 47:55–66

    PubMed  Google Scholar 

  35. 35.

    Ferreira MTM, Chaves ALA, Rocha LC, da Silva LN, Kalthuk-Santos E, Techio VH (2020) Identification of ribosomal sites and karyotype analysis in Festuca ulochaeta Steud. and Festuca fimbriata Ness., grasses native to Brazil. Mol Biol Rep 47(1):261–267

    CAS  PubMed  Google Scholar 

  36. 36.

    Bi Y et al (2020) Flexible chromosome painting based on multiplex PCR of oligonucleotides and its application for comparative chromosome analyses in Cucumis. Plant J 102:178–186

    CAS  PubMed  Google Scholar 

  37. 37.

    Song C et al (2018) The Chrysanthemum nankingense genome provides insights into the evolution and diversification of chrysanthemum flowers and medicinal traits. Mol Plant 11:1482–1491

    CAS  PubMed  Google Scholar 

  38. 38.

    Huang X et al (2018) Structural chromosome rearrangements and polymorphisms identified in Chinese wheat cultivars by high-resolution multiplex oligonucleotide FISH. Theor Appl Genet 131:1967–1986

    CAS  PubMed  Google Scholar 

  39. 39.

    Zhu M, Du P, Zhuang L, Chu C, Zhao H, Qi Z (2017) A simple and efficient non-denaturing FISH method for maize chromosome differentiation using single-strand oligonucleotide probes. Genome 60:657–664

    CAS  PubMed  Google Scholar 

  40. 40.

    Biscotti MA, Olmo E, Heslop-Harrison JS (2015) Repetitive DNA in eukaryotic genomes. Chromosome Res 23:415–420

    CAS  PubMed  Google Scholar 

  41. 41.

    He Q, Cai Z, Hu T, Liu H, Bao C, Mao W, Jin W (2015) Repetitive sequence analysis and karyotyping reveals centromere-associated DNA sequences in radish (Raphanus sativus L.). BMC Plant Biol 15:105

    CAS  PubMed  PubMed Central  Google Scholar 

  42. 42.

    Komuro S, Endo R, Shikata K, Kato A (2013) Genomic and chromosomal distribution patterns of various repeated DNA sequences in wheat revealed by a fluorescence in situ hybridization procedure. Genome 56:131–137

    CAS  Google Scholar 

  43. 43.

    Luo X, Liu J, Wang J, Gong W, Chen L, Wan W (2018) FISH analysis of Zanthoxylum armatum based on oligonucleotides for 5S rDNA and (GAA)6. Genome 61:699–702

    CAS  PubMed  Google Scholar 

  44. 44.

    Jang TS, McCann J, Parker JS, Takayama K, Hong SP, Schneeweiss GM, Weiss-Schneeweiss H (2016) rDNA loci evolution in the genus Glechoma (Lamiaceae). PLoS ONE 11:e0167177

    PubMed  PubMed Central  Google Scholar 

  45. 45.

    Waminal NE, Kim HH (2012) Dual-color FISH karyotype and rDNA distribution analyses on four Cucurbitaceae species. Hortic Environ Biote 53:49–56

    Google Scholar 

  46. 46.

    Wang H et al. (2014) Microsatellite polymorphism among Chrysanthemum sp. polyploids: the influence of whole genome duplication. Sci Rep 4, 6730.

  47. 47.

    Wang W, Li M, Xu Y, Dai S (2003) Several influencing factors on fluorescent in situ hybridization experimental system applied to Dendranthema spp. For Ecosyst 005:30–34

    CAS  Google Scholar 

  48. 48.

    Boutte J et al. (2015) Haplotype detection from next-generation sequencing in high-ploidy-level species: 45S rDNA gene copies in the hexaploid Spartina maritima. G3 (Bethesda) 6, 29–40.

  49. 49.

    Wicke S, Costa A, Munoz J, Quandt D (2011) Restless 5S: the re-arrangement(s) and evolution of the nuclear ribosomal DNA in land plants. Mol Phylogenet Evol 61:321–332

    CAS  PubMed  Google Scholar 

  50. 50.

    Matoba H, Uchiyama H (2009) Physical mapping of 5S rDNA, 18S rDNA and telomere sequences in three species of the Genus Artemisia (Asteraceae) with distinct basic chromosome numbers. Cytologia 74:115–123

    CAS  Google Scholar 

Download references

Funding

This research was supported by the National Key Research and Development Program of China (2018YFD1000401), the Natural Science Fund of Qinghai Province, China (2018-Hz-819), a Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions.

Author information

Affiliations

Authors

Contributions

HW, ZG, WF, SC, FZ, JJ and FC Planned and designed the research. JH Wrote the manuscript and performed experiments. SL Performed experiments. ZY Performed experiments and analyzed data. AS Analyzed data. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Haibin Wang.

Ethics declarations

Conflict of interest

The authors declare that there is no confict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

He, J., Lin, S., Yu, Z. et al. Identification of 5S and 45S rDNA sites in Chrysanthemum species by using oligonucleotide fluorescence in situ hybridization (Oligo-FISH). Mol Biol Rep 48, 21–31 (2021). https://doi.org/10.1007/s11033-020-06102-1

Download citation

Keywords

  • Fluorescence in situ hybridization (FISH) 5S rDNA 45S rDNA
  • Chrysanthemum oligonucleotide