Skip to main content

Advertisement

Log in

Inhibitory effect of cathepsin K inhibitor (ODN-MK-0822) on invasion, migration and adhesion of human breast cancer cells in vitro

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Approximately 90% of patients with advanced breast cancer develop bone metastases; an event that results in severe decrease of quality of life and a drastic deterioration in prognosis. Therefore, to increase the survival of breast cancer patients, the development of new therapeutic strategies to impair metastatic process and skeletal complications is critical. Previous studies on the role of cathepsin K (CTSK) in metastatic spreading led to several strategies for inhibition of this molecule such as MIV-711 (Medivir), balicatib and odanacatib (ODN) which were on trial in the past. The present study intended to assess the anti-metastatic efficacy of ODN in breast cancer cells. Human breast cancer cell lines MDA-MB-231 were treated with different concentrations of ODN and performed invasion, adhesion and migration assays and, RT-PCR and western blot to evaluate the effect of ODN on the metastatic potential of breast cancer cells. ODN markedly decreased wound healing cell migration, invasion and adhesion at a dose dependent manner. ODN inhibits cell invasion by decreasing the matrix metalloproteinase (MMP-9) with the upregulation of TIMP-1 expression. ODN effectively inhibited the phosphorylation of extracellular signal-regulated kinase (ERK), p38, and c-Jun N-terminal Kinase (JNK), and blocked the expression of β-integrins and FAK proteins. ODN also significantly inhibited PI3K downstream targets Rac1, Cdc42, paxillin and Src which are critical for cell adhesion, migration and cytoskeletal reorganization. ODN exerts anti-metastatic action through inhibition of signaling pathway for MMP-9, PI3K and MAPK. This indicates potential therapeutic effects of ODN in the treatment of metastatic breast cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig.2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Ahn SG, Lee HM, Cho SH, Lee SA, Hwang SH, Jeong J, Lee HD (2013) Prognostic factors for patients with bone-only metastasis in breast cancer. Yonsei Med J 54(5):1168–1177. https://doi.org/10.3349/ymj.2013.54.5.1168

    Article  PubMed  PubMed Central  Google Scholar 

  2. Miller KD, Siegel RL, Lin CC, Mariotto AB, Kramer JL, Rowland JH, Stein KD, Alteri R, Jemal A (2016) (2016) Cancer treatment and survivorship statistics. CA Cancer J Clin 66(4):271–289. https://doi.org/10.3322/caac.21349

    Article  Google Scholar 

  3. Siegel RL, Miller KD, Jemal A (2020) Cancer statistics 2020. CA Cancer J Clin 70(1):7–30. https://doi.org/10.3322/caac.21590

    Article  Google Scholar 

  4. Quintanilla-Dieck MJ, Codriansky K, Keady M, Bhawan J, Rünger TM (2008) Cathepsin K in melanoma invasion. J Invest Dermatol 128(9):2281–2288. https://doi.org/10.1038/jid.2008.63

    Article  CAS  PubMed  Google Scholar 

  5. Xie L, Moroi Y, Hayashida S, Tsuji G, Takeuchi S, Shan B, Nakahara T, Uchi H, Takahara M, Furue M (2011) Cathepsin K-upregulation in fibroblasts promotes matrigel invasive ability of squamous cell carcinoma cells via tumour-derived IL-1α. J Dermatol Sci 61(1):45–50. https://doi.org/10.1016/j.jdermsci.2010.09.005

    Article  CAS  PubMed  Google Scholar 

  6. Bode AM, Dong Z (2000) Signal transduction pathways: targets for chemoprevention of skin cancer. Lancet Oncol 1:181–188. https://doi.org/10.1016/s1470-2045(00)00029-2

    Article  CAS  PubMed  Google Scholar 

  7. Vasiljeva O, Korovin M, Gajda M, Brodoefel H, Bojic L, Krüger A, Schurigt U, Sevenich L, Turk B, Peters C, Reinheckel T (2008) Reduced tumour cell proliferation and delayed development of high-grade mammary carcinomas in cathepsin B-deficient mice. Oncogene 27(30):4191–4199. https://doi.org/10.1038/onc.2008.59

    Article  CAS  PubMed  Google Scholar 

  8. Dufour A, Sampson NS, Li J, Kuscu C, Rizzo RC, Deleon JL, Zhi J, Jaber N, Liu E, Zucker S, Cao J (2011) Small-molecule anticancer compounds selectively target the hemopexin domain of matrix metalloproteinase-9. Can Res 71(14):4977–4988. https://doi.org/10.1158/0008-5472.CAN-10-4552

    Article  CAS  Google Scholar 

  9. Christensen J, Shastri VP (2015) Matrix-metalloproteinase-9 is cleaved and activated by cathepsin K. BMC Res Notes 8:322. https://doi.org/10.1186/s13104-015-1284-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Bergers G, Brekken R, McMahon G, Vu TH, Itoh T, Tamaki K, Tanzawa K, Thorpe P, Itohara S, Werb Z, Hanahan D (2000) Matrix metalloproteinase-9 triggers the angiogenic switch during carcinogenesis. Nat Cell Biol 2(10):737–744. https://doi.org/10.1038/35036374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Srinivasan S, Wang F, Glavas S, Ott A, Hofmann F, Aktories K, Kalman D, Bourne HR (2003) Rac and Cdc42 play distinct roles in regulating PI(3,4,5)P3 and polarity during neutrophil chemotaxis. J Cell Biol 160(3):375–385. https://doi.org/10.1083/jcb.200208179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Sotsios Y, Ward SG (2000) Phosphoinositide 3-kinase: a key biochemical signal for cell migration in response to chemokines. Immunol Rev 177:217–235. https://doi.org/10.1034/j.1600-065x.2000.17712.x

    Article  CAS  PubMed  Google Scholar 

  13. Hynes RO (2002) Integrins: bidirectional, allosteric signaling machines. Cell 110(6):673–687. https://doi.org/10.1016/s0092-8674(02)00971-6

    Article  CAS  PubMed  Google Scholar 

  14. Danen EH (2005) Integrins: regulators of tissue function and cancer progression. Curr Pharm Des 11(7):881–891. https://doi.org/10.2174/1381612053381756

    Article  CAS  PubMed  Google Scholar 

  15. Guan JL (2010) Integrin signaling through FAK in the regulation of mammary stem cells and breast cancer. IUBMB Life 62(4):268–276. https://doi.org/10.1002/iub.303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Carragher NO, Frame MC (2004) Focal adhesion and actin dynamics: a place where kinases and proteases meet to promote invasion. Trends Cell Biol 14(5):241–249. https://doi.org/10.1016/j.tcb.2004.03.011

    Article  CAS  PubMed  Google Scholar 

  17. Nakamura H, Hiraga T, Ninomiya T, Hosoya A, Fujisaki N, Yoneda T, Ozawa H (2008) Involvement of cell-cell and cell-matrix interactions in bone destruction induced by metastatic MDA-MB-231 human breast cancer cells in nude mice. J Bone Miner Metab 26(6):642–647. https://doi.org/10.1007/s00774-008-0857-1

    Article  CAS  PubMed  Google Scholar 

  18. Hsia DA, Mitra SK, Hauck CR, Streblow DN, Nelson JA, Ilic D, Huang S, Li E, Nemerow GR, Leng J, Spencer KS, Cheresh DA, Schlaepfer DD (2003) Differential regulation of cell motility and invasion by FAK. J Cell Biol 160(5):753–767. https://doi.org/10.1083/jcb.200212114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Lecaille F, Kaleta J, Brömme D (2002) Human and parasitic papain-like cysteine proteases: their role in physiology and pathology and recent developments in inhibitor design. Chem Rev 102(12):4459–4488. https://doi.org/10.1021/cr0101656

    Article  CAS  PubMed  Google Scholar 

  20. Yamashita K, Iwatake M, Okamoto K, Yamada SI, Umeda M, Tsukuba T (2017) Cathepsin K modulates invasion, migration and adhesion of oral squamous cell carcinomas in vitro. Oral Dis 23(4):518–525. https://doi.org/10.1111/odi.12643

    Article  CAS  PubMed  Google Scholar 

  21. Ndao M, Beaulieu C, Black WC, Isabel E, Vasquez-Camargo F, Nath-Chowdhury M, Massé F, Mellon C, Methot N, Nicoll-Griffith DA (2014) Reversible cysteine protease inhibitors show promise for a Chagas disease cure. Antimicrob Agents Chemother 58(2):1167–1178. https://doi.org/10.1128/AAC.01855-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Eisman JA, Bone HG, Hosking DJ, McClung MR, Reid IR, Rizzoli R, Resch H, Verbruggen N, Hustad CM, DaSilva C, Petrovic R, Santora AC, Ince BA, Lombardi A (2011) Odanacatib in the treatment of postmenopausal women with low bone mineral density: three-year continued therapy and resolution of effect. J Bone Miner Res 26(2):242–251. https://doi.org/10.1002/jbmr.212

    Article  CAS  PubMed  Google Scholar 

  23. Guo J, Bot I, de Nooijer R, Hoffman SJ, Stroup GB, Biessen EA, Benson GM, Groot PH, Van Eck M, Van Berkel TJ (2009) Leucocyte cathepsin K affects atherosclerotic lesion composition and bone mineral density in low-density lipoprotein receptor deficient mice. Cardiovasc Res 81(2):278–285. https://doi.org/10.1093/cvr/cvn311

    Article  CAS  PubMed  Google Scholar 

  24. Xian Zheng, Guanchang Cheng, Jianwei Luo, Qunhui Ye, Yongzhi Deng and Lin Wu(2017). Odanacatib Inhibits Resistin-induced Cardiomyocyte Hypertrophy Through the Inactivation of ERK Signaling Pathway. International Journal of Pharmacology, 13: 212–217.https://scialert.net/abstract/?doi=ijp.2017.212.217

  25. Wang Y, Li R, Zheng Z, Yia H, Li Z (2016) Identification of novel cathepsin K inhibitors using ligand-based virtual screening and structure-based docking. RSC Adv. 6(86):82961–82968. https://doi.org/10.1039/C6RA14251F

    Article  CAS  Google Scholar 

  26. Nizamutdinova IT, Lee GW, Lee JS, Cho MK, Son KH, Jeon SJ, Kang SS, Kim YS, Lee JH, Seo HG, Chang KC, Kim HJ (2008) Tanshinone I suppresses growth and invasion of human breast cancer cells, MDA-MB-231, through regulation of adhesion molecules. Carcinogenesis 29(10):1885–1892. https://doi.org/10.1093/carcin/bgn151

    Article  CAS  PubMed  Google Scholar 

  27. Wang L, Ling Y, Chen Y, Li CL, Feng F, You QD, Lu N, Guo QL (2010) Flavonoid baicalein suppresses adhesion, migration and invasion of MDA-MB-231 human breast cancer cells. Cancer Lett 297(1):42–48. https://doi.org/10.1016/j.canlet.2010.04.022

    Article  CAS  PubMed  Google Scholar 

  28. Wang HH, Hsieh HL, Wu CY, Sun CC, Yang CM (2009) Oxidized low-density lipoprotein induces matrix metalloproteinase-9 expression via a p42/p44 and JNK-dependent AP-1 pathway in brain astrocytes. Glia 57(1):24–38. https://doi.org/10.1002/glia.20732

    Article  PubMed  Google Scholar 

  29. Wang T, Jin X, Liao Y, Sun Q, Luo C, Wang G, Zhao F, Jin Y (2018) Association of NF-κB and AP-1 with MMP-9 Overexpression in 2-Chloroethanol Exposed Rat Astrocytes. Cells 7(8):96. https://doi.org/10.3390/cells7080096

    Article  CAS  PubMed Central  Google Scholar 

  30. Clark AG, Vignjevic DM (2015) Modes of cancer cell invasion and the role of the microenvironment. Curr Opin Cell Biol 36:13–22. https://doi.org/10.1016/j.ceb.2015.06.004

    Article  CAS  PubMed  Google Scholar 

  31. Duffy MJ, Maguire TM, Hill A, McDermott E, O’Higgins N (2000) Metalloproteinases: role in breast carcinogenesis, invasion and metastasis. Breast Cancer Res 2(4):252–257. https://doi.org/10.1186/bcr65

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Merdad A, Karim S, Schulten HJ, Dallol A, Buhmeida A, Al-Thubaity F, Gari MA, Chaudhary AG, Abuzenadah AM, Al-Qahtani MH (2014) Expression of matrix metalloproteinases (MMPs) in primary human breast cancer: MMP-9 as a potential biomarker for cancer invasion and metastasis. Anticancer Res 34(3):1355–1366

    CAS  PubMed  Google Scholar 

  33. Vashum Y, Khashim Z, Fathima Bushra Sheriff M (2020) Cathepsin K and Its specific target in mediating breast cancer skeletal metastasis. Cancer and Oncology Research 6(2):36–46. https://doi.org/10.13189/cor.2020.060202

    Article  CAS  Google Scholar 

  34. Westermarck J, Kähäri VM (1999) Regulation of matrix metalloproteinase expression in tumour invasion. FASEB Journal 13(8):781–792

    Article  CAS  Google Scholar 

  35. Park J, Kwak CH, Ha SH, Kwon KM, Abekura F, Cho SH, Chang YC, Lee YC, Ha KT, Chung TW, Kim CH (2018) Ganglioside GM3 suppresses lipopolysaccharide-induced inflammatory responses in rAW 2647 macrophage cells through NF-κB, AP-1, and MAPKs signaling. J Cell Biochem 119(1):1173–1182. https://doi.org/10.1002/jcb.26287

    Article  CAS  PubMed  Google Scholar 

  36. Karin M (1995) The regulation of AP-1 activity by mitogen-activated protein kinases. J Biol Chem 270(28):16483–16486. https://doi.org/10.1074/jbc.270.28.16483

    Article  CAS  PubMed  Google Scholar 

  37. Cirmi S, Ferlazzo N, Lombardo GE, Maugeri A, Calapai G, Gangemi S, Navarra M (2016) Chemopreventive Agents and Inhibitors of Cancer Hallmarks: May Citrus Offer New Perspectives? Nutrients 8(11):698. https://doi.org/10.3390/nu8110698

    Article  CAS  PubMed Central  Google Scholar 

  38. Weng CJ, Chau CF, Hsieh YS, Yang SF, Yen GC (2008) Lucidenic acid inhibits PMA-induced invasion of human hepatoma cells through inactivating MAPK/ERK signal transduction pathway and reducing binding activities of NF-kappaB and AP-1. Carcinogenesis 29(1):147–156. https://doi.org/10.1093/carcin/bgm261

    Article  CAS  PubMed  Google Scholar 

  39. Zhang W, Liu HT (2002) MAPK signal pathways in the regulation of cell proliferation in mammalian cells. Cell Res 12(1):9–18. https://doi.org/10.1038/sj.cr.7290105

    Article  CAS  PubMed  Google Scholar 

  40. Hill K, Welti S, Yu J, Murray JT, Yip SC, Condeelis JS, Segall JE, Backer JM (2000) Specific requirement for the p85–p110alpha phosphatidylinositol 3-kinase during epidermal growth factor-stimulated actin nucleation in breast cancer cells. J Biol Chem 275(6):3741–3744. https://doi.org/10.1074/jbc.275.6.3741

    Article  CAS  PubMed  Google Scholar 

  41. Sadeghi N, Gerber DE (2012) Targeting the PI3K pathway for cancer therapy. Future Medicinal Chemistry 4(9):1153–1169. https://doi.org/10.4155/fmc.12.56

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Price LS, Collard JG (2001) Regulation of the cytoskeleton by Rho-family GTPases: implications for tumour cell invasion. Semin Cancer Biol 11(2):167–173. https://doi.org/10.1006/scbi.2000.0367

    Article  CAS  PubMed  Google Scholar 

  43. Woodhouse EC, Chuaqui RF, Liotta LA (1997) General mechanisms of metastasis. Cancer 80(8 Suppl):1529–1537. https://doi.org/10.1002/(sici)1097-0142(19971015)80:8+%3c1529::aid-cncr2%3e3.3.co;2-#

    Article  CAS  PubMed  Google Scholar 

  44. Bogenrieder T, Herlyn M (2003) Axis of evil: molecular mechanisms of cancer metastasis. Oncogene 22(42):6524–6536. https://doi.org/10.1038/sj.onc.1206757

    Article  CAS  PubMed  Google Scholar 

  45. Re F, Zanetti A, Sironi M, Polentarutti N, Lanfrancone L, Dejana E, Colotta F (1994) Inhibition of anchorage-dependent cell spreading triggers apoptosis in cultured human endothelial cells. The Journal of Cell Biology 127(2):537–546. https://doi.org/10.1083/jcb.127.2.537

    Article  CAS  PubMed  Google Scholar 

  46. Shintani S, Li C, Mihara M, Nakashiro K, Hamakawa H (2003) Gefitinib ('Iressa’), an epidermal growth factor receptor tyrosine kinase inhibitor, mediates the inhibition of lymph node metastasis in oral cancer cells. Cancer Lett 201(2):149–155. https://doi.org/10.1016/s0304-3835(03)00464-6

    Article  CAS  PubMed  Google Scholar 

  47. Bates RC, Lincz LF, Burns GF (1995) Involvement of integrins in cell survival. Cancer metastasis reviews 14(3):191–203. https://doi.org/10.1007/BF00690291

    Article  CAS  PubMed  Google Scholar 

  48. Mercurio AM, Bachelder RE, Chung J, O’Connor KL, Rabinovitz I, Shaw LM, Tani T (2001) Integrin laminin receptors and breast carcinoma progression. Journal of Mammary Gland Biology and Neoplasia 6(3):299–309. https://doi.org/10.1023/a:1011323608064

    Article  CAS  PubMed  Google Scholar 

  49. Li P, Sun T, Yuan Q, Pan G, Zhang J, Sun D (2016) The expressions of NEDD9 and E-cadherin correlate with metastasis and poor prognosis in triple-negative breast cancer patients. OncoTargets and Therapy 9:5751–5759. https://doi.org/10.2147/OTT.S113768

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Hou S, Isaji T, Hang Q, Im S, Fukuda T, Gu J (2016) Distinct effects of β1 integrin on cell proliferation and cellular signaling in MDA-MB-231 breast cancer cells. Scientific Reports 6:18430. https://doi.org/10.1038/srep18430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Parri M, Chiarugi P (2010) Rac and Rho GTPases in cancer cell motility control. Cell Communication and Signaling 8:23. https://doi.org/10.1186/1478-811X-8-23

    Article  CAS  PubMed  Google Scholar 

  52. Luo M, Guan JL (2010) Focal adhesion kinase: a prominent determinant in breast cancer initiation, progression and metastasis. Cancer Lett 289(2):127–139. https://doi.org/10.1016/j.canlet.2009.07.005

    Article  CAS  PubMed  Google Scholar 

  53. Golubovskaya VM, Finch R, Kweh F, Massoll NA, Campbell-Thompson M, Wallace MR, Cance WG (2008) p53 regulates FAK expression in human tumour cells. Mol Carcinog 47(5):373–382. https://doi.org/10.1002/mc.20395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Gocheva V, Zeng W, Ke D, Klimstra D, Reinheckel T, Peters C, Hanahan D, Joyce JA (2006) Distinct roles for cysteine cathepsin genes in multistage tumourigenesis. Genes Dev 20(5):543–556. https://doi.org/10.1101/gad.1407406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Wu C (2007) Focal adhesion: a focal point in current cell biology and molecular medicine. Cell Adhesion Migration 1(1):13–18. https://doi.org/10.4161/cam.1.1.4081

    Article  PubMed  PubMed Central  Google Scholar 

  56. Arampatzidou M, Schütte A, Hansson GC, Saftig P, Brix K (2012) Effects of cathepsin K deficiency on intercellular junction proteins, luminal mucus layers, and extracellular matrix constituents in the mouse colon. Biol Chem 393(12):1391–1403. https://doi.org/10.1515/hsz-2012-0204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Wong S, Fang CM, Chuah LH, Leong CO, Ngai SC (2018) E-cadherin: Its dysregulation in carcinogenesis and clinical implications. Critical reviews in oncology/hematology 121:11–22. https://doi.org/10.1016/j.critrevonc.2017.11.010

    Article  PubMed  Google Scholar 

  58. Jeanes A, Gottardi CJ, Yap AS (2008) Cadherins and cancer: how does cadherin dysfunction promote tumour progression? Oncogene 27(55):6920–6929. https://doi.org/10.1038/onc.2008.343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Olson OC, Joyce JA (2015) Cysteine cathepsin proteases: regulators of cancer progression and therapeutic response. Nat Rev Cancer 15(12):712–729. https://doi.org/10.1038/nrc4027

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The author is thankful to University Grants Commission (UGC), India for funding to carry out this work.

Funding

This work was financially supported by University Grants Commission (UGC) for UGC: NFST India with IF no. NFST-2015–17-ST- MAN-689.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shila Samuel.

Ethics declarations

Conflict of interests

The authors declare that no competing or financial interest exists.

Ethical approval

The authors have read and abided by the statement of the ethical standards for manuscripts submitted to this journal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vashum, Y., Premsingh, R., Kottaiswamy, A. et al. Inhibitory effect of cathepsin K inhibitor (ODN-MK-0822) on invasion, migration and adhesion of human breast cancer cells in vitro. Mol Biol Rep 48, 105–116 (2021). https://doi.org/10.1007/s11033-020-05951-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-020-05951-0

Keywords

Navigation