Skip to main content
Log in

The role of molecular mechanism of Ten-Eleven Translocation2 (TET2) family proteins in pathogenesis of cardiovascular diseases (CVDs)

  • Mini Review Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Cardiovascular disease (CVD) is one of the most common diseases worldwide. The underlying pathogenesis of the disease has not yet been determined, but many factors have been identified. Tet methylcytosine dioxygenase 2 (TET2) is one of the epigenetic factors involved in regulating many genes. Therefore, based on the studies shown, this factor plays an important role in preventing the occurrence of CVD. TET2 has been shown to increase angiogenesis by expressing Robo4. It also increases the activity of Matrix metalloproteinases (MMPs) and stimulates the secretion of Vascular endothelial growth factor angiogenesis. On the other hand, it has been shown that TET2 regulates the expression of several genes and the development of the heart during the embryonic period due to its oxygenating role. TET2 has been shown to regulates the expression of the genes such as Ying Yang1 (YY1), Sox9b, Inhbaa and many other genes that ultimately lead to the differentiation of cardiomyocytes. On the other hand, it has been shown that some Long non coding RNA and MicroRNAs reduce TET2 expression and CVD. Finally, it is concluded that inducing TET2 expression can be a good therapeutic strategy to prevent or improve CVD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Haybar H, Jalali MT, Zayeri ZD (2018) What genetics tells us about cardiovascular disease in diabetic patients? Cardiovas Haematol Disord-Drug Targets (Former Curr Drug Targets- Cardiovas Haematol Disord) 18(2):147–152

    CAS  Google Scholar 

  2. Castro R, Rivera I, Struys EA, Jansen EE, Ravasco P, Camilo ME et al (2003) Increased homocysteine and S-adenosylhomocysteine concentrations and DNA hypomethylation in vascular disease. Clin Chem 49(8):1292–1296

    CAS  PubMed  Google Scholar 

  3. Zadeh FJ, Moadeli M, Soltanzadeh M, Janatmaksan F (2017) Effect of remote ischemic preconditioning on troponin I in CABG. Anesthesiol Pain Med 7(4):e12549

    Google Scholar 

  4. Fernández-Sanlés A, Sayols-Baixeras S, Subirana I, Degano IR, Elosua R (2017) Association between DNA methylation and coronary heart disease or other atherosclerotic events: a systematic review. Atherosclerosis 263:325–333

    PubMed  Google Scholar 

  5. Leenen FA, Muller CP, Turner JD (2016) DNA methylation: conducting the orchestra from exposure to phenotype? Clin Epigenet 8(1):92

    Google Scholar 

  6. Fuke C, Shimabukuro M, Petronis A, Sugimoto J, Oda T, Miura K et al (2004) Age related changes in 5-methylcytosine content in human peripheral leukocytes and placentas: an HPLC-based study. Ann Hum Genet 68(3):196–204

    CAS  PubMed  Google Scholar 

  7. Bussaglia E, Antón R, Nomdedéu JF, Fuentes-Prior P (2019) TET2 missense variants in human neoplasia. A proposal of structural and functional classification. Mol Genet Genom Med 7:e772

    Google Scholar 

  8. Valinluck V, Sowers LC (2007) Endogenous cytosine damage products alter the site selectivity of human DNA maintenance methyltransferase DNMT1. Can Res 67(3):946–950

    CAS  Google Scholar 

  9. Hashimoto H, Liu Y, Upadhyay AK, Chang Y, Howerton SB, Vertino PM et al (2012) Recognition and potential mechanisms for replication and erasure of cytosine hydroxymethylation. Nucleic Acids Res 40(11):4841–4849

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Lou H, Li H, Ho KJ, Cai L, Huang AS, Shank TR et al (2019) The human TET2 gene contains three distinct promoter regions with differing tissue and developmental specificities. Front Cell Dev Biol 7:99

    PubMed  PubMed Central  Google Scholar 

  11. Zhuang J, Luan P, Li H, Wang K, Zhang P, Xu Y et al (2017) The Yin-Yang dynamics of DNA methylation is the key regulator for smooth muscle cell phenotype switch and vascular remodeling. Arterioscler Thromb Vasc Biol 37(1):84–97

    CAS  PubMed  Google Scholar 

  12. Payami B, Jafarizade M, Mousavi SSB, Sattari S-A, Nokhostin F (2016) Prevalence and predictors of atherosclerotic renal artery stenosis in hypertensive patients undergoing simultaneous coronary and renal artery angiography; a cross-sectional study. J Renal Inj Prev 5(1):34

    PubMed  PubMed Central  Google Scholar 

  13. Tanaka T, Izawa K, Maniwa Y, Okamura M, Okada A, Yamaguchi T et al (2018) ETV2-TET1/TET2 complexes induce endothelial cell-specific Robo4 expression via promoter demethylation. Sci Rep 8(1):5653

    PubMed  PubMed Central  Google Scholar 

  14. Gould RA, Aziz H, Woods CE, Seman-Senderos MA, Sparks E, Preuss C et al (2019) ROBO4 variants predispose individuals to bicuspid aortic valve and thoracic aortic aneurysm. Nat Genet 51(1):42

    CAS  PubMed  Google Scholar 

  15. Bedell VM, Yeo S-Y, Park KW, Chung J, Seth P, Shivalingappa V et al (2005) Roundabout4 is essential for angiogenesis in vivo. Proc Natl Acad Sci 102(18):6373–6378

    CAS  PubMed  Google Scholar 

  16. Seth P, Lin Y, Hanai J-i, Shivalingappa V, Duyao MP, Sukhatme VP (2005) Magic roundabout, a tumor endothelial marker: expression and signaling. Biochem Biophys Res Commun 332(2):533–541

    CAS  PubMed  Google Scholar 

  17. Shirakura K, Ishiba R, Kashio T, Sakai M, Fukushima Y, Yamamoto N et al (2018) Endothelial Robo4 regulates IL-6 production by endothelial cells and monocytes via a crosstalk mechanism in inflammation. Biochem Biophys Res Commun 495(1):801–806

    CAS  PubMed  Google Scholar 

  18. Meschiari CA, Pinheiro LC, Guimaraes DA, Gerlach RF, Tanus-Santos JE (2016) Sodium nitrite attenuates MMP-9 production by endothelial cells and may explain similar effects of atorvastatin. Naunyn-Schmiedeberg’s Arch Pharmacol 389(2):223–231

    CAS  Google Scholar 

  19. Duraisamy AJ, Mishra M, Kowluru RA (2017) Crosstalk between histone and DNA methylation in regulation of retinal matrix metalloproteinase-9 in diabetes. Invest Ophthalmol Vis Sci 58(14):6440–6448

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Chen R, Cai X, Liu J, Bai B, Li X (2018) Sphingosine 1-phosphate promotes mesenchymal stem cell-mediated cardioprotection against myocardial infarction via ERK1/2-MMP-9 and Akt signaling axis. Life Sci 215:31–42

    CAS  PubMed  Google Scholar 

  21. Toba H, Cannon PL, Yabluchanskiy A, Iyer RP, D’Armiento J, Lindsey ML (2016) Transgenic overexpression of macrophage matrix metalloproteinase-9 exacerbates age-related cardiac hypertrophy, vessel rarefaction, inflammation, and fibrosis. Am J Physiol-Heart Circ Physiol 312(3):H375–H383

    PubMed  PubMed Central  Google Scholar 

  22. Deleon-Pennell KY, Altara R, Yabluchanskiy A, Modesti A, Lindsey ML (2015) The circular relationship between matrix metalloproteinase-9 and inflammation following myocardial infarction. IUBMB Life 67(8):611–618

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Sasagawa S, Nishimura Y, Sawada H, Zhang E, Okabe S, Murakami S et al (2016) Comparative transcriptome analysis identifies CCDC80 as a novel gene associated with pulmonary arterial hypertension. Front Pharmacol 7:142

    PubMed  PubMed Central  Google Scholar 

  24. Gong D, Zhang Q, Chen L-Y, Yu X-H, Wang G, Zou J et al (2019) Coiled-coil domain-containing 80 accelerates atherosclerosis development through decreasing lipoprotein lipase expression via ERK1/2 phosphorylation and TET2 expression. Eur J Pharmacol 843:177–189

    CAS  PubMed  Google Scholar 

  25. Qi X-F, Chen Z-Y, Xia J-B, Zheng L, Zhao H, Pi L-Q et al (2015) FoxO3a suppresses the senescence of cardiac microvascular endothelial cells by regulating the ROS-mediated cell cycle. J Mol Cell Cardiol 81:114–126

    CAS  PubMed  Google Scholar 

  26. Sano S, Oshima K, Wang Y, MacLauchlan S, Katanasaka Y, Sano M et al (2018) Tet2-mediated clonal hematopoiesis accelerates experimental heart failure through an IL-1β/NLRP3 inflammasome mechanism. J Am Coll Cardiol 71:875–886

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Bogdanović O, Smits AH, de la Calle ME, Tena JJ, Ford E, Williams R et al (2016) Active DNA demethylation at enhancers during the vertebrate phylotypic period. Nat Genet 48(4):417–426

    PubMed  PubMed Central  Google Scholar 

  28. Fang S, Li J, Xiao Y, Lee M, Guo L, Han W et al (2019) Tet inactivation disrupts YY1 binding and long-range chromatin interactions during embryonic heart development. Nat Commun 10(1):1–18

    Google Scholar 

  29. Lan Y, Pan H, Li C, Banks KM, Sam J, Ding B et al (2019) TETs regulate proepicardial cell migration through extracellular matrix organization during zebrafish cardiogenesis. Cell Rep 26(3):720–732

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Luxán G, D’Amato G, MacGrogan D, de la Pompa JL (2016) Endocardial notch signaling in cardiac development and disease. Circ Res 118(1):e1–e18

    PubMed  Google Scholar 

  31. Li X, Yue X, Pastor WA, Lin L, Georges R, Chavez L et al (2016) Tet proteins influence the balance between neuroectodermal and mesodermal fate choice by inhibiting Wnt signaling. Proc Natl Acad Sci 113(51):E8267–E8276

    CAS  PubMed  Google Scholar 

  32. Terragni J, Zhang G, Sun Z, Pradhan S, Song L, Crawford GE et al (2014) Notch signaling genes: myogenic DNA hypomethylation and 5-hydroxymethylcytosine. Epigenetics 9(6):842–850

    PubMed  PubMed Central  Google Scholar 

  33. Liu XH, De Gasperi R, Bauman WA, Cardozo CP (2018) Nandrolone-induced nuclear accumulation of MyoD protein is mediated by Numb, a Notch inhibitor, in C2C12 myoblasts. Physiol Rep 6(1):e13520

    PubMed Central  Google Scholar 

  34. Greco CM, Kunderfranco P, Rubino M, Larcher V, Carullo P, Anselmo A et al (2016) DNA hydroxymethylation controls cardiomyocyte gene expression in development and hypertrophy. Nat Commun 7(1):1–15

    Google Scholar 

  35. Zarzour A, Kim HW, Weintraub NL (2019) Epigenetic regulation of vascular diseases. Arterioscler Thromb Vasc Biol 39(6):984–990

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Javaherforoosh Zadeh F, Janatmakan F, Soltanzadeh M, Zamankhani M (2019) Investigating the effect of fibrinogen injection on bleeding in coronary artery bypass surgery: a clinical trial. Anesthesiol Pain Med 9(4):92165

    Google Scholar 

  37. Dorsheimer L, Assmus B, Rasper T, Ortmann CA, Ecke A, Abou-El-Ardat K et al (2019) Association of mutations contributing to clonal hematopoiesis with prognosis in chronic ischemic heart failure. JAMA Cardiol 4(1):25–33

    PubMed  Google Scholar 

  38. Nakatsukasa H, Oda M, Yin J, Chikuma S, Ito M, Koga-Iizuka M et al (2019) Loss of TET proteins in regulatory T cells promotes abnormal proliferation, Foxp3 destabilization and IL-17 expression. Int Immunol 31(5):335–347

    CAS  PubMed  Google Scholar 

  39. Seyedian SS, Nokhostin F, Malamir MD (2019) A review of the diagnosis, prevention, and treatment methods of inflammatory bowel disease. J Med Life 12(2):113

    PubMed  PubMed Central  Google Scholar 

  40. Ichiyama K, Chen T, Wang X, Yan X, Kim B-S, Tanaka S et al (2015) The methylcytosine dioxygenase Tet2 promotes DNA demethylation and activation of cytokine gene expression in T cells. Immunity 42(4):613–626

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Janatmakan F, Nesioonpour S, Zadeh FJ, Teimouri A, Vaziri M (2019) Comparing the effect of clonidine and dexmedetomidine on intraoperative bleeding in spine surgery. Anesthesiol Pain Med 9(1):83967

    Google Scholar 

  42. Wu T, Peng Y, Yan S, Li N, Chen Y, Lan T (2018) Andrographolide ameliorates atherosclerosis by suppressing pro-inflammation and ROS generation-mediated foam cell formation. Inflammation 41(5):1681–1689

    CAS  PubMed  Google Scholar 

  43. Haybar H, Shahrabi S, Rezaeeyan H, Shirzad R, Saki N (2019) Endothelial cells: from dysfunction mechanism to pharmacological effect in cardiovascular disease. Cardiovasc Toxicol 19(1):13–22

    CAS  PubMed  Google Scholar 

  44. Zhaolin Z, Jiaojiao C, Peng W, Yami L, Tingting Z, Jun T et al (2019) OxLDL induces vascular endothelial cell pyroptosis through miR-125a-5p/TET2 pathway. J Cell Physiol 234(5):7475–7491

    PubMed  Google Scholar 

  45. Man SM, Karki R, Kanneganti TD (2017) Molecular mechanisms and functions of pyroptosis, inflammatory caspases and inflammasomes in infectious diseases. Immunol Rev 277(1):61–75

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Hoseini Z, Sepahvand F, Rashidi B, Sahebkar A, Masoudifar A, Mirzaei H (2018) NLRP3 inflammasome: its regulation and involvement in atherosclerosis. J Cell Physiol 233(3):2116–2132

    CAS  PubMed  Google Scholar 

  47. Ji K-T, Qian L, Nan J-l, Xue Y-J, Zhang S-Q, Wang G-Q et al (2015) Ox-LDL induces dysfunction of endothelial progenitor cells via activation of NF-B. BioMed Res Int 2015:8

    Google Scholar 

  48. Liu M, Yu P, Jiang H, Yang X, Zhao J, Zou Y et al (2017) The essential role of Pin1 via NF-κB signaling in vascular inflammation and atherosclerosis in ApoE−/− mice. Int J Mol Sci 18(3):644

    PubMed Central  Google Scholar 

  49. Peng J, Tang Z-H, Ren Z, He B, Zeng Y, Liu L-S et al (2017) TET2 protects against oxLDL-induced HUVEC dysfunction by upregulating the CSE/H2S system. Front Pharmacol 8:486

    PubMed  PubMed Central  Google Scholar 

  50. Huang S, Li H, Ge J (2015) A cardioprotective insight of the cystathionine γ-lyase/hydrogen sulfide pathway. IJC Heart & Vasc 7:51–57

    Google Scholar 

  51. Wirawan E, Lippens S, Vanden Berghe T, Romagnoli A, Fimia GM, Piacentini M et al (2012) Beclin1: a role in membrane dynamics and beyond. Autophagy 8(1):6–17

    CAS  PubMed  Google Scholar 

  52. Li Y, Li J, Zhang P, Jiang X, Pan Z, Zheng W et al (2020) LncRNA-LET relieves hypoxia-induced injury in H9c2 cells through regulation of miR-138. J Cell Biochem 121(1):259–268

    CAS  PubMed  Google Scholar 

  53. Greco S, Gaetano C, Martelli F (2019) Long noncoding competing endogenous rna networks in age-associated cardiovascular diseases. Int J Mol Sci 20(12):3079

    CAS  PubMed Central  Google Scholar 

  54. Ren S, Xu Y (2019) AC016405. 3, a novel long noncoding RNA, acts as a tumor suppressor through modulation of TET2 by microRNA-19a-5p sponging in glioblastoma. Cancer Sci 110(5):1621

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Deng W, Wang J, Zhang J, Cai J, Bai Z, Zhang Z (2016) TET2 regulates LncRNA-ANRIL expression and inhibits the growth of human gastric cancer cells. IUBMB Life 68(5):355–364

    CAS  PubMed  Google Scholar 

  56. Tan P, Guo Y-H, Zhan J-K, Long L-M, Xu M-L, Ye L et al (2019) LncRNA-ANRIL inhibits cell senescence of vascular smooth muscle cells by regulating miR-181a/Sirt1. Biochem Cell Biol 97(5):571–580

    CAS  PubMed  Google Scholar 

  57. Maiese K (2017) Harnessing the power of SIRT1 and non-coding RNAs in vascular disease. Curr Neurovasc Res 14(1):82–88

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Yao H, Duan M, Lin L, Wu C, Fu X, Wang H et al (2017) TET2 and MEG3 promoter methylation is associated with acute myeloid leukemia in a Hainan population. Oncotarget 8(11):18337

    PubMed  PubMed Central  Google Scholar 

  59. Piccoli M-T, Gupta SK, Viereck J, Foinquinos A, Samolovac S, Kramer FL et al (2017) Inhibition of the cardiac fibroblast–enriched lncRNA Meg3 prevents cardiac fibrosis and diastolic dysfunction. Circ Res 121(5):575–583

    CAS  PubMed  Google Scholar 

  60. Wu H, Zhao Z-A, Liu J, Hao K, Yu Y, Han X et al (2018) Long noncoding RNA Meg3 regulates cardiomyocyte apoptosis in myocardial infarction. Gene Ther 25(8):511

    CAS  PubMed  Google Scholar 

  61. Zhang S, Gao S, Wang Y, Jin P, Lu F (2019) lncRNA SRA1 promotes the activation of cardiac myofibroblasts through negative regulation of miR-148b. DNA Cell Biol 38(4):385–394

    PubMed  Google Scholar 

  62. Miscianinov V, Martello A, Rose L, Parish E, Cathcart B, Mitić T et al (2018) MicroRNA-148b targets the TGF-β pathway to regulate angiogenesis and endothelial-to-mesenchymal transition during skin wound healing. Mol Ther 26(8):1996–2007

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Jiang Y, Zhuang J, Lin Y, Wang X, Chen J, Han F (2019) Long noncoding RNA SNHG6 contributes to ventricular septal defect formation via negative regulation of miR-101 and activation of Wnt/β-catenin pathway. Die Pharm-An Int J Pharm Sci 74(1):23–28

    CAS  Google Scholar 

  64. Sun R, Zhang L (2019) Long non-coding RNA MALAT1 regulates cardiomyocytes apoptosis after hypoxia/reperfusion injury via modulating miR-200a-3p/PDCD4 axis. Biomed Pharmacother 111:1036–1045

    CAS  PubMed  Google Scholar 

  65. Huang S, Tao W, Guo Z, Cao J, Huang X (2019) Suppression of long noncoding RNA TTTY15 attenuates hypoxia-induced cardiomyocytes injury by targeting miR-455-5p. Gene 701:1–8

    CAS  PubMed  Google Scholar 

  66. Kalfon R, Haas T, Shofti R, Moskovitz J, Schwartz O, Suss-Toby E et al (2017) c-Jun dimerization protein 2 (JDP2) deficiency promotes cardiac hypertrophy and dysfunction in response to pressure overload. Int J Cardiol 249:357–363

    CAS  PubMed  Google Scholar 

  67. Yan H, Liang H, Liu L, Chen D, Zhang Q (2019) Long noncoding RNA NEAT1 sponges miR-125a-5p to suppress cardiomyocyte apoptosis via BCL2L12. Mol Med Rep 19(5):4468–4474

    CAS  PubMed  Google Scholar 

  68. Liu K, Liu C, Zhang Z (2019) lncRNA GAS5 acts as a ceRNA for miR-21 in suppressing PDGF-bb-induced proliferation and migration in vascular smooth muscle cells. J Cell Biochem 120(9):15233–15240

    CAS  PubMed  Google Scholar 

  69. Wang P, Yuan Y (2019) LncRNA-ROR alleviates hypoxia-triggered damages by downregulating miR-145 in rat cardiomyocytes H9c2 cells. J Cell Physiol 234(12):23695–23704

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We wish to thank all our colleagues in Golestan Hospital and Allied Health Sciences School, Ahvaz Jundishapur University of Medical Sciences.

Author information

Authors and Affiliations

Authors

Contributions

HR has conceived the manuscript and revised it. FJZ, and AS wrote the manuscript. ZD and ND design table and figure. TA conduct revise and edited grammar English.

Corresponding author

Correspondence to Hadi Rezaeeyan.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zadeh, F.J., Akbari, T., zayeri, Z.D. et al. The role of molecular mechanism of Ten-Eleven Translocation2 (TET2) family proteins in pathogenesis of cardiovascular diseases (CVDs). Mol Biol Rep 47, 5503–5509 (2020). https://doi.org/10.1007/s11033-020-05602-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-020-05602-4

Keywords

Navigation