Evolutionarily conserved and testis-specific gene, 4930524B15Rik, is not essential for mouse spermatogenesis and fertility


Thousands of genes are involved in spermatogenesis, however, the functional roles of most these genes for male fertility remain to be discovered. This research focused to explore the function of evolutionarily conserved and testis-specific expressed gene 4930524B15Rik, which is known as C5orf47 in human. We generated 4930524B15Rik knockout mice by CRISPR/Cas9 technology and found 4930524B15Rik−/− mice were fertile. Furthermore, no averted abnormalities were observed in testis morphology, epididymal sperm contents and sperm morphology in 4930524B15Rik knockout mice. Subsequently, histological analysis of testicular tissue revealed intact structure of seminiferous tubules along with the presence of all types of germ cells in 4930524B15Rik−/− mice similar to wild type. Additionally, cytological analysis of spermatocytes displayed no significant differences in the prophase I progression of meiosis, further indicating that 4930524B15Rik have no essential function in mammalian spermatogenesis. Altogether, these results indicated that 4930524B15Rik is dispensable for fertility of male mice and these findings will help researchers to avoid future research overlap and to focus on genes that are crucial for spermatogenesis and reproduction.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4


  1. 1.

    Schultz N, Hamra FK, Garbers DL (2003) A multitude of genes expressed solely in meiotic or postmeiotic spermatogenic cells offers a myriad of contraceptive targets. Proc Natl Acad Sci U S A 100(21):12201–12206. https://doi.org/10.1073/pnas.1635054100

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  2. 2.

    Inoue N, Ikawa M, Isotani A, Okabe M (2005) The immunoglobulin superfamily protein Izumo is required for sperm to fuse with eggs. Nature 434(7030):234–238. https://doi.org/10.1038/nature03362

    CAS  Article  PubMed  Google Scholar 

  3. 3.

    Castaneda JM, Hua R, Miyata H, Oji A, Guo Y, Cheng Y, Zhou T, Guo X, Cui Y, Shen B, Wang Z, Hu Z, Zhou Z, Sha J, Prunskaite-Hyyrylainen R, Yu Z, Ramirez-Solis R, Ikawa M, Matzuk MM, Liu M (2017) TCTE1 is a conserved component of the dynein regulatory complex and is required for motility and metabolism in mouse spermatozoa. Proc Natl Acad Sci U S A 114(27):E5370–E5378. https://doi.org/10.1073/pnas.1621279114

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  4. 4.

    Grimes SR Jr, van Wert J, Wolfe SA (1997) Regulation of transcription of the testis-specific histone H1t gene by multiple promoter elements. Mol Biol Rep 24(3):175–184. https://doi.org/10.1023/a:1006807716339

    CAS  Article  PubMed  Google Scholar 

  5. 5.

    Jiang L, Li T, Zhang X, Zhang B, Yu C, Li Y, Fan S, Jiang X, Khan T, Hao Q, Xu P, Nadano D, Huleihel M, Lunenfeld E, Wang PJ, Zhang Y, Shi Q (1505e) RPL10L Is required for male meiotic division by compensating for RPL10 during meiotic sex chromosome inactivation in mice. Curr Biol 27(10):1498–1505e1496. https://doi.org/10.1016/j.cub.2017.04.017

    CAS  Article  PubMed  Google Scholar 

  6. 6.

    Gao Q, Khan R, Yu C, Alsheimer M, Jiang X, Ma H, Shi Q (2020) The testis-specific LINC component SUN3 is essential for sperm head shaping during mouse spermiogenesis. J Biol Chem 295(19):6289–6298. https://doi.org/10.1074/jbc.RA119.012375

    Article  PubMed  Google Scholar 

  7. 7.

    Holcomb RJ, Oura S, Nozawa K, Kent K, Yu Z, Robertson MJ, Coarfa C, Matzuk MM, Ikawa M, Garcia TX (2020) The testis-specific serine proteases PRSS44, PRSS46, and PRSS54 are dispensable for male mouse fertilitydagger. Biol Reprod 102(1):84–91. https://doi.org/10.1093/biolre/ioz158

    Article  PubMed  Google Scholar 

  8. 8.

    Lu Y, Oura S, Matsumura T, Oji A, Sakurai N, Fujihara Y, Shimada K, Miyata H, Tobita T, Noda T, Castaneda JM, Kiyozumi D, Zhang Q, Larasati T, Young SAM, Kodani M, Huddleston CA, Robertson MJ, Coarfa C, Isotani A, Aitken RJ, Okabe M, Matzuk MM, Garcia TX, Ikawa M (2019) CRISPR/Cas9-mediated genome editing reveals 30 testis-enriched genes dispensable for male fertility in micedagger. Biol Reprod 101(2):501–511. https://doi.org/10.1093/biolre/ioz103

    Article  PubMed  PubMed Central  Google Scholar 

  9. 9.

    Nie D, Dai Y, Luo Z (2020) The testis-specific expressed gene Spata34 is not required for fertility in mice. Mol Biol Rep 47(1):285–292. https://doi.org/10.1007/s11033-019-05131-9

    CAS  Article  PubMed  Google Scholar 

  10. 10.

    Huang Z, Khan M, Xu J, Khan T, Ma H, Khan R, Hussain HMJ, Jiang X, Shi Q (2019) The deubiquitinating gene Usp29 is dispensable for fertility in male mice. Sci China Life Sci 62(4):544–552. https://doi.org/10.1007/s11427-018-9469-4

    CAS  Article  PubMed  Google Scholar 

  11. 11.

    Xie Y, Khan R, Wahab F, Hussain HMJ, Ali A, Ma H, Jiang H, Xu J, Zaman Q, Khan M, Jiang X, Shi Q (2019) The testis-specifically expressed Dpep3 is not essential for male fertility in mice. Gene 711:143925. https://doi.org/10.1016/j.gene.2019.06.015

    CAS  Article  PubMed  Google Scholar 

  12. 12.

    Calvi A, Wong AS, Wright G, Wong ES, Loo TH, Stewart CL, Burke B (2015) SUN4 is essential for nuclear remodeling during mammalian spermiogenesis. Dev Biol 407(2):321–330. https://doi.org/10.1016/j.ydbio.2015.09.010

    CAS  Article  PubMed  Google Scholar 

  13. 13.

    Hu X, Shen B, Liao S, Ning Y, Ma L, Chen J, Lin X, Zhang D, Li Z, Zheng C, Feng Y, Huang X, Han C (2017) Gene knockout of Zmym3 in mice arrests spermatogenesis at meiotic metaphase with defects in spindle assembly checkpoint. Cell Death Dis 8(6):e2910. https://doi.org/10.1038/cddis.2017.228

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  14. 14.

    Mi Y, Shi Z, Li J (2015) Spata19 is critical for sperm mitochondrial function and male fertility. Mol Reprod Dev 82(11):907–913. https://doi.org/10.1002/mrd.22536

    CAS  Article  PubMed  Google Scholar 

  15. 15.

    Pierre V, Martinez G, Coutton C, Delaroche J, Yassine S, Novella C, Pernet-Gallay K, Hennebicq S, Ray PF, Arnoult C (2012) Absence of Dpy19l2, a new inner nuclear membrane protein, causes globozoospermia in mice by preventing the anchoring of the acrosome to the nucleus. Development 139(16):2955–2965. https://doi.org/10.1242/dev.077982

    CAS  Article  PubMed  Google Scholar 

  16. 16.

    Fu W, O’Connor TD, Jun G, Kang HM, Abecasis G, Leal SM, Gabriel S, Rieder MJ, Altshuler D, Shendure J, Nickerson DA, Bamshad MJ, NHLBI Exome Sequencing Project, Akey JM (2013) Analysis of 6,515 exomes reveals the recent origin of most human protein-coding variants. Nature 493(7431):216–220. https://doi.org/10.1038/nature11690

    CAS  Article  PubMed  Google Scholar 

  17. 17.

    The Genomes Project Consortium, Auton A, Brooks LD, Durbin RM, Garrison EP, Kang HM, Korbel JO, Marchini JL, McCarthy S, McVean GA, Abecasis GR (2015) A global reference for human genetic variation. Nature 526(7571):68–74. https://doi.org/10.1038/nature15393

    CAS  Article  Google Scholar 

  18. 18.

    Lek M, Karczewski KJ, Minikel EV, Samocha KE, Banks E, Fennell T, O'Donnell-Luria AH, Ware JS, Hill AJ, Cummings BB, Tukiainen T, Birnbaum DP, Kosmicki JA, Duncan LE, Estrada K, Zhao F, Zou J, Pierce-Hoffman E, Berghout J, Cooper DN, Deflaux N, DePristo M, Do R, Flannick J, Fromer M, Gauthier L, Goldstein J, Gupta N, Howrigan D, Kiezun A, Kurki MI, Moonshine AL, Natarajan P, Orozco L, Peloso GM, Poplin R, Rivas MA, Ruano-Rubio V, Rose SA, Ruderfer DM, Shakir K, Stenson PD, Stevens C, Thomas BP, Tiao G, Tusie-Luna MT, Weisburd B, Won HH, Yu D, Altshuler DM, Ardissino D, Boehnke M, Danesh J, Donnelly S, Elosua R, Florez JC, Gabriel SB, Getz G, Glatt SJ, Hultman CM, Kathiresan S, Laakso M, McCarroll S, McCarthy MI, McGovern D, McPherson R, Neale BM, Palotie A, Purcell SM, Saleheen D, Scharf JM, Sklar P, Sullivan PF, Tuomilehto J, Tsuang MT, Watkins HC, Wilson JG, Daly MJ, MacArthur DG, Exome Aggregation Consortium (2016) Analysis of protein-coding genetic variation in 60,706 humans. Nature 536(7616):285–291. https://doi.org/10.1038/nature19057

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  19. 19.

    Wang H, Yang H, Shivalila CS, Dawlaty MM, Cheng AW, Zhang F, Jaenisch R (2013) One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering. Cell 153(4):910–918. https://doi.org/10.1016/j.cell.2013.04.025

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  20. 20.

    Jiang X, Ma T, Zhang Y, Zhang H, Yin S, Zheng W, Wang L, Wang Z, Khan M, Sheikh SW, Bukhari I, Iqbal F, Cooke HJ, Shi Q (2015) Specific deletion of Cdh2 in Sertoli cells leads to altered meiotic progression and subfertility of mice. Biol Reprod 92(3):79. https://doi.org/10.1095/biolreprod.114.126334

    CAS  Article  PubMed  Google Scholar 

  21. 21.

    Matsuoka Y, Miyagawa Y, Tokuhiro K, Kitamura K, Iguchi N, Maekawa M, Takahashi T, Tsujimura A, Matsumiya K, Okuyama A, Nishimune Y, Tanaka H (2008) Isolation and characterization of the spermatid-specific Smrp1 gene encoding a novel manchette protein. Mol Reprod Dev 75(6):967–975. https://doi.org/10.1002/mrd.20835

    CAS  Article  PubMed  Google Scholar 

  22. 22.

    He Z, Yan RG, Zhang XN, Yang QE (2020) Ring 1 and YY1 binding protein expressed in murine spermatocytes but dispensable for spermatogenesis. Genes (Basel) 11(1):84. https://doi.org/10.3390/genes11010084

    CAS  Article  Google Scholar 

  23. 23.

    Cheon DJ, Wang Y, Deng JM, Lu Z, Xiao L, Chen CM, Bast RC, Behringer RR (2009) CA125/MUC16 is dispensable for mouse development and reproduction. PLoS ONE 4(3):e4675. https://doi.org/10.1371/journal.pone.0004675

    CAS  Article  PubMed  PubMed Central  Google Scholar 

Download references


This work was supported by the National Key Research and Developmental Program of China (2018YFC1004700, 2018YFC1003403 and 2016YFC1000600), the Strategic Priority Research Program of the Chinese Academy of Sciences (XDB19000000), the National Natural Science Foundation of China (31890780, 31630050 and 31871514), Major Program of Development Foundation of Hefei Centre for Physical Science and Technology (2018ZYFX005), the Fundamental Research Funds for the Central Universities (YD2070002006).

Author information




Conceived and designed the experiments: QS XJ. Performed the experiments: RK JY. Analyzed the data: RK JY. Wrote the paper: RK XJ. Modification of the manuscript: AA AY WS QZ BS MZ QS.

Corresponding authors

Correspondence to Qinghua Shi or Xiaohua Jiang.

Ethics declarations

Conflict of interest

All authors declare that no conflict of interest exists.

Ethical approval

All the experiments and examination on laboratory animals were directed by the institutional rules of Institutional Animal Care Committee of University of Science and Technology of China with the approval number USTCACUC1301021.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S1 mRNA sequencing and real-time PCR. (A) Representative Sanger sequencing chromatograms at cDNA levels confirmed the insertion of nucleotide of 930524B15Rik in knockout mice. Red arrowhead above the chromatograms cDNA sequence show the insertion. (B) Real-time PCR revealed significant decrease of 4930524B15Rik mRNA in 4930524B15Rik-/- testes. (TIF 759 kb)

Fig. S2 4930524B15Rik-/- sperm morphology and motility. (A) Sperm morphology from 10-week-old 4930524B15Rik+/+ and 4930524B15Rik-/- mice. Scale bars, 50 μm. (B) The ratio of normal or abnormal sperm from 10-week-old 4930524B15Rik+/+ and 4930524B15Rik-/- mice. (C) The ratio of average rate of motile sperm in 4930524B15Rik+/+ and 4930524B15Rik-/- mice. (D) The ratio of progressive motile sperm from 4930524B15Rik+/+ and 4930524B15Rik-/- mice. (TIF 6626 kb)

Supplementary file3 (DOCX 13 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Khan, R., Ye, J., Yousaf, A. et al. Evolutionarily conserved and testis-specific gene, 4930524B15Rik, is not essential for mouse spermatogenesis and fertility. Mol Biol Rep (2020). https://doi.org/10.1007/s11033-020-05595-0

Download citation


  • 4930524B15Rik
  • C5orf47
  • Testis-specific gene
  • Spermatogenesis
  • Fertility