Evaluation of a cell-based osteogenic formulation compliant with good manufacturing practice for use in tissue engineering


Proper bony tissue regeneration requires mechanical stabilization, an osteogenic biological activity and appropriate scaffolds. The latter two elements can be combined in a hydrogel format for effective delivery, so it can readily adapt to the architecture of the defect. We evaluated a Good Manufacturing Practice-compliant formulation composed of bone marrow-derived mesenchymal stromal cells in combination with bone particles (Ø = 0.25 to 1 µm) and fibrin, which can be readily translated into the clinical setting for the treatment of bone defects, as an alternative to bone tissue autografts. Remarkably, cells survived with unaltered phenotype (CD73+, CD90+, CD105+, CD31, CD45) and retained their osteogenic capacity up to 48 h after being combined with hydrogel and bone particles, thus demonstrating the stability of their identity and potency. Moreover, in a subchronic toxicity in vivo study, no toxicity was observed upon subcutaneous administration in athymic mice and signs of osteogenesis and vascularization were detected 2 months after administration. The preclinical data gathered in the present work, in compliance with current quality and regulatory requirements, demonstrated the feasibility of formulating an osteogenic cell-based tissue engineering product with a defined profile including identity, purity and potency (in vitro and in vivo), and the stability of these attributes, which complements the preclinical package required prior to move towards its use of prior to its clinical use.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3

Data availability

All datasets generated for this study are included in the manuscript and the supplementary files.



Alkaline phosphatase


Bone Marrow


Dulbecco’s Modified Eagle’s Medium


Endothelial progenitor cells


Good Manufacturing Practice


Human Leukocyte Antigen


Hematopoietic stem progenitor cells


Human serum albumin


Mononuclear cell


Multipotent Mesenchymal Stromal Cells


Passage number


Peripheral Blood Mononuclear Cells


Tissue Engineering Product


  1. 1.

    Giannoudis PV, Einhorn TA, Marsh D (2007) Fracture healing: the diamond concept. Injury 38(Suppl 4):S3–S6

    PubMed  Google Scholar 

  2. 2.

    Dias MI, Lourenco P, Rodrigues A, Azevedo J, Viegas C, Ferreira A et al (2007) The effect of the quantitative variation of autologous spongy bone graft applied for bone regeneration in an experimental model of tibia osteotomy. Acta Med Port 20(1):37–46

    PubMed  Google Scholar 

  3. 3.

    Wheeler DL, Enneking WF (2005) Allograft bone decreases in strength in vivo over time. Clin Orthop Relat Res 435:36–42

    Google Scholar 

  4. 4.

    Chou LB, Mann RA, Coughlin MJ, McPeake WT 3rd, Mizel MS (2007) Stress fracture as a complication of autogenous bone graft harvest from the distal tibia. Foot Ankle Int 28(2):199–201

    PubMed  Google Scholar 

  5. 5.

    Prat S, Gallardo-Villares S, Vives M, Carreño A, Caminal M, Oliver-Vila I et al (2018) Clinical translation of a mesenchymal stromal cell-based therapy developed in a large animal model and two case studies of the treatment of atrophic pseudoarthrosis. J Tissue Eng Regen Med 12(1):e532–e540

    CAS  PubMed  Google Scholar 

  6. 6.

    Caminal M, Velez R, Rabanal RM, Vivas D, Batlle-Morera L, Aguirre M et al (2017) A reproducible method for the isolation and expansion of ovine mesenchymal stromal cells from bone marrow for use in regenerative medicine preclinical studies. J Tissue Eng Regen Med 11(12):3408–3416

    CAS  PubMed  Google Scholar 

  7. 7.

    Hernigou P, Poignard A, Beaujean F, Rouard H (2005) Percutaneous autologous bone-marrow grafting for nonunions. Influence of the number and concentration of progenitor cells. J Bone Joint Surg Am 87(7):1430–1437

    PubMed  Google Scholar 

  8. 8.

    Hernigou P, Beaujean F (2002) Treatment of osteonecrosis with autologous bone marrow grafting. Clin Orthop Relat Res 405:14–23

    Google Scholar 

  9. 9.

    Vives J, Mirabel C (2019) Multipotent mesenchymal stromal cells from bone marrow for current and potential clinical applications. In: Reis RL (ed) Encyclopedia of tissue engineering and regenerative medicine. Academic Press, Oxford, pp 503–512

    Google Scholar 

  10. 10.

    Codinach M, Blanco M, Ortega I, Lloret M, Reales L, Coca MI et al (2016) Design and validation of a consistent and reproducible manufacture process for the production of clinical-grade bone marrow-derived multipotent mesenchymal stromal cells. Cytotherapy 18(9):1197–1208

    CAS  PubMed  Google Scholar 

  11. 11.

    López Fernández A, Barro V, Ortiz-Hernández M, Manzanares-Céspedes MC, Vivas D, Vives J et al (2020) Effect of allogeneic cell-based tissue engineered treatments in a sheep osteonecrosis model. Tissue Eng Part A. https://doi.org/10.1089/ten.TEA.2019.0339

    Article  PubMed  Google Scholar 

  12. 12.

    Caminal M, Vélez R, Rabanal RM, Vivas D, Batlle-Morera L, Aguirre M et al (2017) A reproducible method for the isolation and expansion of ovine mesenchymal stromal cells from bone marrow for use in regenerative medicine preclinical studies. J Tissue Eng Regen Med 11(12):3408–3416

    CAS  PubMed  Google Scholar 

  13. 13.

    Oliver-Vila I, Coca MI, Grau-Vorster M, Pujals-Fonts N, Caminal M, Casamayor-Genesca A et al (2016) Evaluation of a cell-banking strategy for the production of clinical grade mesenchymal stromal cells from Wharton's jelly. Cytotherapy 18(1):25–35

    PubMed  Google Scholar 

  14. 14.

    Caminal M, Peris D, Fonseca C, Barrachina J, Codina D, Rabanal RM et al (2016) Cartilage resurfacing potential of PLGA scaffolds loaded with autologous cells from cartilage, fat, and bone marrow in an ovine model of osteochondral focal defect. Cytotechnology 68(4):907–919

    CAS  PubMed  Google Scholar 

  15. 15.

    Mirabel C, Puente-Massaguer E, Del Mazo-Barbara A, Reyes B, Morton P, Gòdia F et al (2018) Stability enhancement of clinical grade multipotent mesenchymal stromal cell-based products. J Transl Med 16(1):291

    CAS  PubMed  PubMed Central  Google Scholar 

  16. 16.

    Cash JM, Remmers EF, Goldmuntz EA, Crofford LJ, Zha H, Hansen CT et al (1993) Genetic mapping of the athymic nude (RNU) locus in the rat to a region on chromosome 10. Mamm Genome 4(1):37–42

    CAS  PubMed  Google Scholar 

  17. 17.

    Zachos TA, Bertone AL, Wassenaar PA, Weisbrode SE (2007) Rodent models for the study of articular fracture healing. J Invest Surg 20(2):87–95

    PubMed  Google Scholar 

  18. 18.

    Davies G, Grant AG, Duke D, Hermon-Taylor J (1983) Antibody response of nude (RNU/RNU) and hairy (RNU/+) rats to circulating cell surface components from human pancreatic cancer xenografts. Br J Cancer 48(2):239–245

    CAS  PubMed  PubMed Central  Google Scholar 

  19. 19.

    Rolstad B (2001) The athymic nude rat: an animal experimental model to reveal novel aspects of innate immune responses? Immunol Rev 184:136–144

    CAS  PubMed  Google Scholar 

  20. 20.

    Vishnu Priya M, Sivshanmugam A, Boccaccini AR, Goudouri OM, Sun W, Hwang N et al (2016) Injectable osteogenic and angiogenic nanocomposite hydrogels for irregular bone defects. Biomed Mater 11(3):035017

    CAS  PubMed  Google Scholar 

  21. 21.

    Panwar A, Tan LP (2016) Current status of bioinks for micro-extrusion-based 3D bioprinting. Molecules 21(6):685

    PubMed Central  Google Scholar 

  22. 22.

    Gopinathan J, Noh I (2018) Recent trends in bioinks for 3D printing. Biomater Res 22:11

    PubMed  PubMed Central  Google Scholar 

  23. 23.

    Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D et al (2006) Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy. 8(4):315–317

    CAS  PubMed  Google Scholar 

  24. 24.

    Mendicino M, Bailey AM, Wonnacott K, Puri RK, Bauer SR (2014) MSC-based product characterization for clinical trials: an FDA perspective. Cell Stem Cell 14(2):141–145

    CAS  PubMed  Google Scholar 

  25. 25.

    Dighe PA, Viswanathan P, Mruthunjaya AK, Seetharam RN (2013) Effect of bFGF on HLA-DR expression of human bone marrow-derived mesenchymal stem cells. J Stem Cells 8(1):43–57

    PubMed  Google Scholar 

  26. 26.

    Grau-Vorster M, Rodríguez L, Torrents-Zapata S, Vivas D, Codinach M, Blanco M et al (2019) Levels of IL-17F and IL-33 correlate with HLA-DR activation in clinical-grade human bone marrow-derived multipotent mesenchymal stromal cell expansion cultures. Cytotherapy 21(1):32–40

    CAS  PubMed  Google Scholar 

  27. 27.

    Grau-Vorster M, Laitinen A, Nystedt J, Vives J (2019) HLA-DR expression in clinical-grade bone marrow-derived multipotent mesenchymal stromal cells: a two-site study. Stem Cell Res Ther 10(1):164

    PubMed  PubMed Central  Google Scholar 

  28. 28.

    Matoba S, Tatsumi T, Murohara T, Imaizumi T, Katsuda Y, Ito M et al (2008) Long-term clinical outcome after intramuscular implantation of bone marrow mononuclear cells (therapeutic angiogenesis by cell transplantation [TACT] trial) in patients with chronic limb ischemia. Am Heart J 156(5):1010–1018

    PubMed  Google Scholar 

  29. 29.

    Korf-Klingebiel M, Kempf T, Sauer T, Brinkmann E, Fischer P, Meyer GP et al (2008) Bone marrow cells are a rich source of growth factors and cytokines: implications for cell therapy trials after myocardial infarction. Eur Heart J 29(23):2851–2858

    PubMed  Google Scholar 

  30. 30.

    Friedenstein AJ, Chailakhyan RK, Gerasimov UV (1987) Bone marrow osteogenic stem cells: in vitro cultivation and transplantation in diffusion chambers. Cell Tissue Kinet 20(3):263–272

    CAS  PubMed  Google Scholar 

  31. 31.

    Prockop DJ (1997) Marrow stromal cells as stem cells for nonhematopoietic tissues. Science 276(5309):71–74

    CAS  PubMed  Google Scholar 

  32. 32.

    Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD et al (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284(5411):143–147

    CAS  PubMed  Google Scholar 

  33. 33.

    Buchta C, Dettke M, Funovics PT, Hocker P, Knobl P, Macher M et al (2004) Fibrin sealant produced by the CryoSeal FS System: product chemistry, material properties and possible preparation in the autologous preoperative setting. Vox Sang 86(4):257–262

    CAS  PubMed  Google Scholar 

  34. 34.

    Noori A, Ashrafi SJ, Vaez-Ghaemi R, Hatamian-Zaremi A, Webster TJ (2017) A review of fibrin and fibrin composites for bone tissue engineering. Int J Nanomed 12:4937–4961

    CAS  Google Scholar 

  35. 35.

    Mankad PS, Codispoti M (2001) The role of fibrin sealants in hemostasis. Am J Surg 182(2 Suppl):21S–S28

    CAS  PubMed  Google Scholar 

  36. 36.

    Amrani DL, Diorio JP, Delmotte Y (2001) Wound healing Role of commercial fibrin sealants. Ann N Y Acad Sci 936:566–579

    CAS  PubMed  Google Scholar 

  37. 37.

    Carless PA, Anthony DM, Henry DA (2002) Systematic review of the use of fibrin sealant to minimize perioperative allogeneic blood transfusion. Br J Surg 89(6):695–703

    CAS  PubMed  Google Scholar 

  38. 38.

    Currie LJ, Sharpe JR, Martin R (2001) The use of fibrin glue in skin grafts and tissue-engineered skin replacements: a review. Plast Reconstr Surg 108(6):1713–1726

    CAS  PubMed  Google Scholar 

  39. 39.

    Liu G, Li Y, Sun J, Zhou H, Zhang W, Cui L et al (2010) In vitro and in vivo evaluation of osteogenesis of human umbilical cord blood-derived mesenchymal stem cells on partially demineralized bone matrix. Tissue Eng Part A 16(3):971–982

    CAS  PubMed  Google Scholar 

  40. 40.

    Cabrera-Pérez R, Monguió-Tortajada M, Gámez-Valero A, Rojas-Márquez R, Borràs FE, Roura S et al (2019) Osteogenic commitment of Wharton's jelly mesenchymal stromal cells: mechanisms and implications for bioprocess development and clinical application. Stem Cell Res Ther 10(1):356

    PubMed  PubMed Central  Google Scholar 

  41. 41.

    Seebach E, Freischmidt H, Holschbach J, Fellenberg J, Richter W (2014) Mesenchymal stroma cells trigger early attraction of M1 macrophages and endothelial cells into fibrin hydrogels, stimulating long bone healing without long-term engraftment. Acta Biomater 10(11):4730–4741

    CAS  PubMed  Google Scholar 

  42. 42.

    Yamada Y, Ueda M, Naiki T, Takahashi M, Hata K, Nagasaka T (2004) Autogenous injectable bone for regeneration with mesenchymal stem cells and platelet-rich plasma: tissue-engineered bone regeneration. Tissue Eng 10(5–6):955–964

    CAS  PubMed  Google Scholar 

  43. 43.

    Yamada Y, Nakamura S, Ito K, Umemura E, Hara K, Nagasaka T et al (2013) Injectable bone tissue engineering using expanded mesenchymal stem cells. Stem Cells 31(3):572–580

    CAS  PubMed  PubMed Central  Google Scholar 

  44. 44.

    Yamada Y, Nakamura S, Ito K, Kohgo T, Hibi H, Nagasaka T et al (2008) Injectable tissue-engineered bone using autogenous bone marrow-derived stromal cells for maxillary sinus augmentation: clinical application report from a 2-6-year follow-up. Tissue Eng Part A 14(10):1699–1707

    CAS  PubMed  Google Scholar 

  45. 45.

    Kargozar S, Mozafari M, Hashemian SJ, Brouki Milan P, Hamzehlou S, Soleimani M et al (2018) Osteogenic potential of stem cells-seeded bioactive nanocomposite scaffolds: a comparative study between human mesenchymal stem cells derived from bone, umbilical cord Wharton's jelly, and adipose tissue. J Biomed Mater Res B Appl Biomater 106(1):61–72

    CAS  PubMed  Google Scholar 

  46. 46.

    Shimizu T, Akahane M, Morita Y, Omokawa S, Nakano K, Kira T et al (2015) The regeneration and augmentation of bone with injectable osteogenic cell sheet in a rat critical fracture healing model. Injury 46(8):1457–1464

    PubMed  Google Scholar 

  47. 47.

    Ma D, Zhong C, Yao H, Liu Y, Chen F, Li J et al (2011) Engineering injectable bone using bone marrow stromal cell aggregates. Stem Cells Dev 20(6):989–999

    PubMed  Google Scholar 

Download references


The authors would like to acknowledge former members of Xcelia and current members of Servei de Teràpia Cel·lular (Banc de Sang i Teixits, Barcelona) for technical support and advice.


This work has been developed in the context of ADVANCE(CAT) with the support of ACCIÓ (Catalonia Trade & Investment; Generalitat de Catalunya) and the European Community under the Catalonian ERDF operational program (European Regional Development Fund) 2014-2020, Generalitat de Catalunya (Departament de Salut) PERIS Acció Instrumental de Programes de Recerca Orientats (SLT002/16/00234) and by the Spanish Cell Therapy Network (TerCel, expedient number: RD16/0011/0028). Project PI19/01788 is funded by Instituto de Salud Carlos III and co-funded by European Union (ERDF/ESF)—A way to build Europe. JV’s laboratory is awarded by the Generalitat de Catalunya as Consolidated Research Group (ref. 2017SGR719).

Author information




DV, MGV, IOV and JV performed experiments and analysed data; JGL and JV conceived the study; DV and JV revised data and wrote the manuscript. All authors revised and approved the final version of the manuscript.

Corresponding author

Correspondence to Joaquim Vives.

Ethics declarations

Conflict of interest

All authors declares that they have no conflict of interest.

Ethical approval

Cells were sourced from Banc de Sang i Teixits’ Biobank (Barcelona, Spain) and had appropriate donor informed consent for use in research. Authorization issued by Hospital de la Vall d’Hebron’s Ethics Committee (Barcelona, Spain) to JV. All animal care and experimental procedures adhered to the recommendations of local, national, and European laws (Decret 214 de 1997, Real Decreto 53 de 2013, European directive 86/609/CEE of 1986, respectively) and were approved by the Universitat Autònoma de Barcelona’s Ethical Committee on Human and Animal Experimentation (Ref. No. CEAAH 1972), and registered by Generalitat de Catalunya (Reg. No. DMAiH 6967).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 8033 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Vivas, D., Grau-Vorster, M., Oliver-Vila, I. et al. Evaluation of a cell-based osteogenic formulation compliant with good manufacturing practice for use in tissue engineering. Mol Biol Rep (2020). https://doi.org/10.1007/s11033-020-05588-z

Download citation


  • Multipotent mesenchymal stromal cell
  • Good manufacturing practice
  • Hydrogel
  • Bone remodelling
  • Cell therapy
  • Cell culture
  • Tissue engineering