Marine macroalga Caulerpa: role of its metabolites in modulating cancer signaling


Cancer, the leading causes of death worldwide, causes multiple metabolic and physiological alterations, leading to an unregulated proliferation of cells. The existing anticancer therapies are usually nonspecific with side effects and or are extremely expensive, thus hunt for better therapeutics is still on, specially efforts are made to look for naturally occurring molecules. Sea harbors several organisms which are unexplored for their biological potentials. Green macroalga genus, Caulerpa, is one such invaluable repository of bioactive metabolites like alkaloids, terpenoids, flavonoids, steroids and tannins with reported bioactivities against many diseases including cancer. Anti-cancerous metabolites of Caulerpa like caulerpenyne (Cyn), caulerpin, caulersin, and racemosin C, possess unique structural moieties and are known to exhibit distinct effects on cancer cells. Theses metabolites are reported to affect microtubule dynamics, unfolded protein response, mitochondrial health, cell cycle progression, metabolic and stress pathways by their cross-talk with signalling proteins like AMPK, GRP78, GADD153, Bid, Bax, AIF, Bcl2, P21, cyclin D, cyclin E, caspase 9, and PTP1B. Targeting of multiple cancer hallmarks by Caulerpa metabolites, with concomitant modulations of multiple signalling cascades, displays its multifactorial approach against cancer. Evaluation of anti-cancer properties of this genus is particularly important as Caulerpa species are widely edible and utilized in several delicacies in the coastal countries. This is the first review article providing a consolidated information about the role of Caulerpa in cancer with major contributing metabolites and plausible modulations in cancer signaling and prospects.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2





Multixenobiotic resistance


Enodplasmic reticulum


Unfolded protein response


Microtubule associated proteins


  1. 1.

    Demain AL, Vaishnav P (2011) Natural products for cancer chemotherapy. Micro Biotechnol 4(6):687–699

    Article  Google Scholar 

  2. 2.

    Gill BS, Mehra R, Navgeet S (2018) Vitex negundo and its medicinal value. Mol Bio Rep.

    Article  Google Scholar 

  3. 3.

    Mehra R, Gill BS, Kumar V, Kumar S (2017) Ganoderic acid, lanosteroid triterpenoid: a key player in apoptosis. Invest New Drugs 36(1):136–143

    PubMed  Google Scholar 

  4. 4.

    Andersen RJ (2017) Sponging off nature for new drug leads. Biochem Pharmacol 139:3–14

    Article  CAS  PubMed  Google Scholar 

  5. 5.

    Guiry MD, Guiry GM (2019) AlgaeBase. World-wide electronic publication, National University of Ireland, Galway. Accessed 8 Feb 2019

  6. 6.

    Bhushan S, Mehra R, Rani P, Bast F (2016) DbIndAlgae: online resource of Seaweeds of Indian coasts. Curr Sci 111:717–723

    Article  Google Scholar 

  7. 7.

    Robledo D, Pelegrin YF (1997) Chemical and mineral composition of six potentially edible seaweed species of Yucatan. Bot Mar 40:301–306

    Article  CAS  Google Scholar 

  8. 8.

    De Gaillande C, Payri C, Remoissenet G, Zubia M (2017) Caulerpa consumption, nutritional value and farming in the Indo-Pacific region. J Appl Phycol 29:249–2266

    Article  CAS  Google Scholar 

  9. 9.

    Walters LJ, Brown KR, Stam WT, Olsen JL (2006) E-commerce and Caulerpa: unregulated dispersal of invasive species. Front Ecol Environ 4(2):75–79

    Article  Google Scholar 

  10. 10.

    Montefalcone M, Morri C, Parravicini V, Bianchi CN (2015) A tale of two invaders: divergent spreading kinetics of the alien green algae Caulerpa taxifolia and Caulerpa cylindracea. Biol Invasions 17(9):2717–2728

    Article  Google Scholar 

  11. 11.

    Paul VJ, Fenical W (1986) Chemical defense in tropical green algae, order Caulerpales. Mar Ecol Prog Series 34:157–169

    Article  CAS  Google Scholar 

  12. 12.

    Lin HC, Chou ST, Chuang MY, Liao TY, Tsai WS, Chiu TH (2012) The effects of Caulerpa microphysa enzyme-digested extracts on ACE-inhibitory activity and in vitro anti-tumour properties. Food Chem 134:2235–2241

    Article  CAS  PubMed  Google Scholar 

  13. 13.

    Nagappan T, Vairappan CS (2014) Nutritional and bioactive properties of three edible species of green algae, genus Caulerpa (Caulerpaceae). J Appl Phycol 26:1019–1027

    Article  CAS  Google Scholar 

  14. 14.

    Montaser R, Luesch H (2011) Marine natural products: a new wave of drugs? Future 3(12):1475–1489

    CAS  Google Scholar 

  15. 15.

    Higa T, Kuniyoshi M (2000) Toxins associated with medicinal and edible seaweeds. J Toxicol Toxin Rev 19(2):119–137

    Article  CAS  Google Scholar 

  16. 16.

    Gavagnin M, Marin A, Castelluccio F, Villani G, Cimino G (1994) Defensive relationships between Caulerpa prolifera and its shelled sacoglossan predators. J Exp Mar Biol Ecol 175:197–210

    Article  Google Scholar 

  17. 17.

    Sfecci E, Le Quemener C, Lacour T, Massi L, Amade P, Audo G, Mehiri M (2017) Caulerpenyne from Caulerpa taxifolia: a comparative study between CPC and classical chromatographic techniques. Phytochem Lett 20:406–409

    Article  CAS  Google Scholar 

  18. 18.

    Sun Y, Gong G, Guo Y, Wang Z, Song S, Zhu B, Zhao L, Jiang J (2018) Purification, structural features and immunostimulatory activity of novel polysaccharides from Caulerpa lentillifera. Int J Biol Macromol 108:314–323

    Article  CAS  Google Scholar 

  19. 19.

    Box Centeno A, Sureda A, Tauler P, Terrados J, Marbà N, Pons A (2010) Seasonality of caulerpenyne content in native Caulerpa prolifera and invasive C. taxifolia and C. racemosa var. cylindracea in the western Mediterranean Sea. Bot Mar 53(4):367–375

    Google Scholar 

  20. 20.

    Kim S, Chen J, Cheng T, Gindulyte A, He J, He S, Li Q, Shoemaker BA, Thiessen PA, Yu B, Zaslavsky L, Zhang J, Bolton EE. PubChem 2019 update: improved access to chemical data. Nucleic Acids Res. 47(D1):D1102–D1109

  21. 21.

    Yang H, Liu DQ, Liang TJ, Li J, Liu AH, Yang P, Lin K, Yu XQ, Guo YW, Mao SC, Wang B (2014) Racemosin C, a novel minor bisindole alkaloid with protein tyrosine phosphatase-1B inhibitory activity from the green alga Caulerpa racemosa. J Asian Nat Prod Res 16:1158–1165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. 22.

    Aguilar-Santos G (1970) Caulerpin, a new red pigment from green algae of the genus Caulerpa. J Chem Soc C 6:842–3

    Article  CAS  Google Scholar 

  23. 23.

    Maiti BC, Thomson RH (1977) Caulerpin. In: Marine natural products chemistry. Springer, Boston, pp 159–163

    Google Scholar 

  24. 24.

    Li H, Liao X, Sun Y, Zhou R, Long W, Li L, Gu L, Xu S (2018) An economical synthesis of caulerpin and evaluation of its new anticancer activities. Chem Select 3(44):12406–12409

    CAS  Google Scholar 

  25. 25.

    Santos G, Doty MS (1974) Constituents of the green alga Caulerpa lamourouxii. Lloydia 34(1):88

    Google Scholar 

  26. 26.

    Vest SE, Dawes CJ, Romeo JT (1983) Distribution of caulerpin and caulerpicin in eight species of the green alga Caulerpa (Caulerpales). Bot Mar 26:313–316

    Article  CAS  Google Scholar 

  27. 27.

    Güven KC, Percot A, Sezik E (2010) Alkaloids in marine algae. Mar Drugs 8:269–284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. 28.

    Capon RJ, Ghisalberti EL, Jefferies PR (1983) Metabolites of the green algae, Caulerpa species. Phytochem 22:1465–1467

    Article  CAS  Google Scholar 

  29. 29.

    Murugan K, Iyer VV (2013) Differential growth inhibition of cancer cell lines and antioxidant activity of extracts of red, brown, and green marine algae. In Vitro Cell Dev Biol-Animal 49:324–334

    Article  CAS  Google Scholar 

  30. 30.

    Macedo NRPV, Ribeiro MS, Villaca RC, Ferreira W, Pinto AM, Teixeira VL, Cirne-Santos C, Paixao IC, Giongo V (2012) Caulerpin as a potential antiviral drug against herpes simplex virus type 1. Rev Bras Farmacogn 22:861–867

    Article  CAS  Google Scholar 

  31. 31.

    Vairappan CS (2004) Antibacterial activity of major secondary metabolites found in four species of edible green macroalgae genus Caulerpa. Asian J Microbiol Biotechnol Environ Sci 6:197–201

    CAS  Google Scholar 

  32. 32.

    De Souza ET, Pereira de Lira D, Cavalcanti de Queiroz A, de Auino A, Campessato Mella EA, Prates Lorenzo V, De Miranda GE, De Araujo-Junior JX, De Oliveira Chaves MC, Barbosa-Filho JM (2009) The antinociceptive and anti-inflammatory activities of caulerpin, a bisindole alkaloid isolated from seaweeds of the genus Caulerpa. Mar Drugs 7:689–704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. 33.

    Schröder HC, Badria FA, Ayyad SN, Batel R, Wiens M, Hassanein HM, Kurelec B, Muller WE (1998) Inhibitory effects of extracts from the marine alga Caulerpa taxifolia and of toxin from Caulerpa racemosa on multixenobiotic resistance in the marine sponge Geodia cydonium. Environ Toxicol Pharmacol 5:119–126

    Article  PubMed  Google Scholar 

  34. 34.

    Raub MF, Cardellina JH, Schwede JG (1987) The green algal pigment caulerpin as a plant growth regulator. Phytochem 26:619–620

    Article  CAS  Google Scholar 

  35. 35.

    Mao SC, Guo YW, Shen X (2006) Two novel aromatic valerenane-type sesquiterpenes from the Chinese green alga Caulerpa taxifolia. Bioorg Med Chem Lett 16:2947–2950

    Article  CAS  PubMed  Google Scholar 

  36. 36.

    Su JY, Zhu Y, Zeng LM, Xu XH (1997) A new bisindole from alga Caulerpa serrulata. J Nat Prod 60:1043–1044

    Article  CAS  Google Scholar 

  37. 37.

    Bergman J (2013) Synthesis and studies of two marine indole alkaloids, barettin and caulersin. Phytochem Rev 12:487–494

    Article  CAS  Google Scholar 

  38. 38.

    Wahlström L, Stensland B, Bergman J (2004) Synthesis of the marine alkaloid caulersin. Tetrahedron 60:2147–2153

    Article  CAS  Google Scholar 

  39. 39.

    Feldhammer M, Uetani N, Miranda-Saavedra D, Tremblay ML (2013) PTP1B: a simple enzyme for a complex world. Crit Rev Biochem Mol Biol 48:430–445

    Article  CAS  PubMed  Google Scholar 

  40. 40.

    Amico V, Piattelli M, Tringali C, Fattorusso E, Magno S, Mayol L (1978) Caulerpenyne, an unusual sequiterpenoid from the green alga Caulerpa prolifera. Tetrahedron Lett 19:3593–3596

    Article  Google Scholar 

  41. 41.

    Dumay O, Pergent G, Pergent-Martini C, Amade P (2002) Variations in caulerpenyne contents in Caulerpa taxifolia and Caulerpa racemosa. J Chem Ecol 28:343–352

    Article  CAS  PubMed  Google Scholar 

  42. 42.

    Kandemir-Cavas C, Cavas L, Yokes MB, Hlynka M, Schell R, Yuradoc K (2008) A novel application of queueing theory on the Caulerpenyne secreted by invasive Caulerpa taxifolia (Vahl) C. Agardh (Ulvophyceae, Caulerpales): a preliminary study. Mediterr Mar Sci 9:67–76

    Article  Google Scholar 

  43. 43.

    Raniello R, Mollo E, Lorenti M, Gavagnin M, Buia MC (2007) Phytotoxic activity of caulerpenyne from the Mediterranean invasive variety of Caulerpa racemosa: a potential allelochemical. Biol Invasions 9:361–368

    Article  Google Scholar 

  44. 44.

    Barbier P, Guise S, Huitorel P, Amade P, Pesando D, Briand C, Peyrot V (2001) Caulerpenyne from Caulerpa taxifolia has an antiproliferative activity on tumor cell line SK-N-SH and modifies the microtubule network. Life Sci 70:415–429

    Article  CAS  Google Scholar 

  45. 45.

    Mozzachiodi R, Scuri R, Roberto M, Brunelli M (2001) Caulerpenyne, a toxin from the seaweed Caulerpa taxifolia, depresses afterhyperpolarization in invertebrate neurons. Neuroscience 107:519–526

    Article  CAS  PubMed  Google Scholar 

  46. 46.

    Fischel J, Lemee R, Formento P, Caldani C, Moll JL, Pesando D, Meinsez A, Grelier P, Pietra P, Guerriiero A (1995) Cell growth inhibitory effects of caulerpenyne, a sesquiterpenoid from the marine algae Caulerpa taxifolia. Anticancer Res 15:2155–2160

    CAS  PubMed  Google Scholar 

  47. 47.

    Yang P, Liu DQ, Liang TJ, Zhang HY, Liu AH, Guo YW, Mao SC (2015) Bioactive constituents from the green alga Caulerpa racemosa. Bioorg Med Chem 23:38–45

    Article  CAS  PubMed  Google Scholar 

  48. 48.

    Liu DQ, Mao SC, Zhang HY, Yu XQ, Feng MT, Wang B, Feng LH, Guo YW (2013) Racemosins A and B, two novel bisindole alkaloids from the green alga Caulerpa racemosa. Fitoterapia 91:15–20

    Article  CAS  PubMed  Google Scholar 

  49. 49.

    Muenst S, Läubli H, Soysal SD, Zippelius A, Tzankov A, Hoeller S (2016) The immune system and cancer evasion strategies: therapeutic concepts. J Int Med 279(6):541–562

    Article  CAS  Google Scholar 

  50. 50.

    Ashkenazi A, Fairbrother WJ, Leverson JD, Souers AJ (2017) From basic apoptosis discoveries to advanced selective BCL-2 family inhibitors. Nat Rev Drug Discov 16(4):273–284

    Article  CAS  PubMed  Google Scholar 

  51. 51.

    Mehra R, Bhushan S, Yadav UP, Bast F, Singh S (2019) Caulerpa taxifolia inhibits cell proliferation and induces oxidative stress in breast cancer cells. Biologia 74(2):187–193

    Article  Google Scholar 

  52. 52.

    Mukhtar E, Adhami VM, Mukhtar H (2014) Targeting microtubules by natural agents for cancer therapy. Mol Cancer Ther 13(2):275–284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. 53.

    Hasanpourghadi M, Pandurangan AK, Mustafa MR (2017) Microtubule targeting agents in cancer therapy: elucidating the underlying molecular mechanisms. In: Farooqi A, Ismail M (eds) Molecular oncology: underlying mechanisms and translational advancements. Springer, Cham, pp 15–65

    Google Scholar 

  54. 54.

    Jordan MA, Wilson L (2004) Microtubules as a target for anticancer drugs. Nat Rev Cancer 4:253–265

    Article  CAS  Google Scholar 

  55. 55.

    Ngan VK, Bellman K, Hill BT, Wilson L, Jordan MA (2001) Mechanism of mitotic block and inhibition of cell proliferation by the semisynthetic Vinca alkaloids vinorelbine and its newer derivative vinflunine. Mol Pharmacol 60:225–232

    Article  CAS  PubMed  Google Scholar 

  56. 56.

    Pesando D, Huitorel P, Dolcini V, Amade P, Girard JP (1998) Caulerpenyne interferes with microtubule dependent events during the first mitotic cycle of sea urchin eggs. Eur J Cell Biol 77:19–26

    Article  CAS  PubMed  Google Scholar 

  57. 57.

    Kurt O, Ozdal-Kurt F, Tuglu I, Deliloglu-Gurhan SI, Ozturk M (2009) Neurotoxic effect of Caulerpa racemosa var. cylindracea by neurite inhibition on the neuroblastoma cell line. Russ J Mar Biol 35:342–350

    Article  CAS  Google Scholar 

  58. 58.

    Horwitz SB (1994) Taxol (paclitaxel): mechanisms of action. Ann Oncol 5:S3–S6

    Article  PubMed  Google Scholar 

  59. 59.

    Donoso JA, Haskins KM, Himes RH (1979) Effect of microtubule-associated proteins on the interaction of vincristine with microtubules and tubulin. Cancer Res 39(5):1604–1610

    CAS  PubMed  Google Scholar 

  60. 60.

    Bourdron J, Barbier P, Allegro D, Villard C, Lafitte D, Commeiras L, Parrain JL, Peyrot V (2009) Caulerpenyne binding to tubulin: structural modifications by a non conventional pharmacological agent. Med Chem 5:182–190

    Article  CAS  PubMed  Google Scholar 

  61. 61.

    Wang M, Kaufman RJ (2014) The impact of the endoplasmic reticulum protein-folding environment on cancer development. Nat Rev Cancer 14(9):581

    Article  CAS  PubMed  Google Scholar 

  62. 62.

    Vandewynckel YP, Laukens D, Geerts A, Bogaerts E, Paridaens A, Verhelst X, Janssens S, Heindryckx F, Van Vlierberghe H (2013) The paradox of the unfolded protein response in cancer. Anticancer Res 33(11):4683–4694

    CAS  PubMed  Google Scholar 

  63. 63.

    Chou ST, Lin HC, Chuang MY, Chiu TH (2014) Treatment with Caulerpa microphysa pepsin-digested extract induces apoptosis in murine leukemia WEHI-3 cells. J Food Biochem 38:469–479

    Article  Google Scholar 

  64. 64.

    Lee AS (2007) GRP78 induction in cancer: therapeutic and prognostic implications. Cancer Res 67:3496–3499

    Article  CAS  PubMed  Google Scholar 

  65. 65.

    Zhang LH, Zhang X (2010) Roles of GRP78 in physiology and cancer. J Cel Biochem 110(6):1299–1305

    Article  CAS  Google Scholar 

  66. 66.

    Guo J, Yuan Y, Lu D, Du B, Xiong L, Shi J, Yang L, Liu W, Yuan X, Zhang G, Wang F (2014) Two natural products, trans-phytol and (22E)-ergosta-6, 9, 22-triene-3β, 5α, 8α-triol, inhibit the biosynthesis of estrogen in human ovarian granulosa cells by aromatase (CYP19). Toxicol Appl Pharmacol 279(1):23–32

    Article  CAS  PubMed  Google Scholar 

  67. 67.

    Sano R, Reed JC (2013) ER stress-induced cell death mechanisms. Biochim Biophys Acta (BBA)-Mol Cell Res 1833:3460–3470

    Article  CAS  Google Scholar 

  68. 68.

    Tonks NK (2005) Redox redux: revisiting PTPs and the control of cell signaling. Cell 121(5):667–670

    Article  CAS  PubMed  Google Scholar 

  69. 69.

    Easty D, Gallagher W, Bennett DC (2006) Protein tyrosine phosphatases, new targets for cancer therapy. Curr Cancer Drug Targets 6(6):519–532

    Article  CAS  PubMed  Google Scholar 

  70. 70.

    Bollu LR, Mazumdar A, Savage MI, Brown PH (2017) Molecular pathways: targeting protein tyrosine phosphatases in cancer. Clin Cancer Res 0934

  71. 71.

    Lessard L, Stuible M, Tremblay ML (2010) The two faces of PTP1B in cancer. Biochim Biophys Acta-Proteins Proteom 1804:613–619

    Article  CAS  Google Scholar 

  72. 72.

    Koppenol WH, Bounds PL, Dang CV (2011) Otto Warburg’s contributions to current concepts of cancer metabolism. Nat Rev Cancer 11(5):325–337

    Article  CAS  PubMed  Google Scholar 

  73. 73.

    Ferramosca A, Conte A, Guerra F, Felline S, Rimoli MG, Mollo E, Zara V, Terlizzi A (2016) Metabolites from invasive pests inhibit mitochondrial complex II: a potential strategy for the treatment of human ovarian carcinoma? Biochem Biophys Res Comm 473:1133–1138

    Article  CAS  PubMed  Google Scholar 

  74. 74.

    Yu H, Zhang H, Dong M, Wu Z, Shen Z, Xie Y, Kong Z, Dai X, Xu B (2017) Metabolic reprogramming and AMPKα1 pathway activation by caulerpin in colorectal cancer cells. Int J Oncol 50:161–172

    Article  CAS  PubMed  Google Scholar 

  75. 75.

    Fogarty S, Ross FA, Ciruelos DV, Gray A, Gowans GJ, Hardie DG (2016) AMPK causes cell cycle arrest in LKB1-deficient cells via activation of CAMKK2. Mol Can Res 0479

  76. 76.

    Pusapati RV, Daemen A, Wilson C, Sandowal W, Gao M, Haley B, Baudy AR, Hatzivassiliou G, Evangelista M, Settleman J (2016) mTORC1-dependent metabolic reprogramming underlies escape from glycolysis addiction in cancer cells. Cancer Cell 29:548–562

    Article  CAS  PubMed  Google Scholar 

  77. 77.

    Han J, Zhang L, Guo H, Wysham WZ, Roque DR, Willson AK, Sheng X, Zhou C, Bae-Jump VL (2015) Glucose promotes cell proliferation, glucose uptake and invasion in endometrial cancer cells via AMPK/mTOR/S6 and MAPK signaling. Gynecol Oncol 138(3):668–675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. 78.

    Malumbres M, Barbacid M (2009) Cell cycle, CDKs and cancer: a changing paradigm. Nat Rev Cancer 9:153–166

    Article  CAS  PubMed  Google Scholar 

  79. 79.

    Otto T, Sicinski P (2017) Cell cycle proteins as promising targets in cancer therapy. Nat Rev Cancer 17(2):93

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. 80.

    Lakmal HHC, Samarakoon KW, Lee W, Lee JH, Abeytunga DT, Lee HS, Jeon YJ (2014) Anticancer and antioxidant effects of selected Sri Lankan marine algae. J Natl Sci Found Sri Lanka 42(4):315–323

    Article  Google Scholar 

  81. 81.

    Evan GI, Vousden KH (2001) Proliferation, cell cycle and apoptosis in cancer. Nature 411(6835):342

    Article  CAS  PubMed  Google Scholar 

  82. 82.

    Lopez J, Tait SW (2015) Mitochondrial apoptosis: killing cancer using the enemy within. Br J Caner 112(6):957

    Article  CAS  Google Scholar 

  83. 83.

    Maeda R, Ida T, Ihara H, Sakamoto T (2012) Induction of apoptosis in MCF-7 cells by β-1, 3-xylooligosaccharides prepared from Caulerpa lentillifera. Biosci Biotechnol Biochem 76:1032–1034

    Article  CAS  PubMed  Google Scholar 

  84. 84.

    Cotter TG (2009) Apoptosis and cancer: the genesis of a research field. Nat Rev Cancer 9:501–507

    Article  CAS  PubMed  Google Scholar 

  85. 85.

    Cregan SP, Dawson VL, Slack RS (2004) Role of AIF in caspase-dependent and caspase-independent cell death. Oncogene 23:2785–2796

    Article  CAS  PubMed  Google Scholar 

  86. 86.

    Kanegawa K, Harada H, Myouga H, Katakura Y, Shirahata S, Kamei Y (2000) Telomerase inhibiting activity in vitro from natural resources, marine algae extracts. Cytotechnol 33:221–227

    Article  CAS  Google Scholar 

  87. 87.

    Blasco MA (2015) Telomeres and human disease: ageing, cancer and beyond. Nat Rev Genetics 6:611–622

    Article  CAS  Google Scholar 

  88. 88.

    Cairns RA, Harris IS, Mak TW (2011) Regulation of cancer cell metabolism. Nat Rev Cancer 11(2):85–95

    Article  CAS  PubMed  Google Scholar 

  89. 89.

    Galanis A, Pappa A, Giannakakis A, Lanitis E, Dangaj D, Sandaltzopoulos R (2008) Reactive oxygen species and HIF-1 signalling in cancer. Cancer Lett 266(1):12–20

    Article  CAS  PubMed  Google Scholar 

  90. 90.

    Semenza GL (2003) Targeting HIF-1 for cancer therapy. Nat Rev Cancer 3:721–732

    Article  CAS  Google Scholar 

  91. 91.

    Liu Y, Morgan JB, Coothankandaswamy V, Liu R, Jekabsons MB, Mahdi F, Nagle DG, Zhou YD (2009) The Caulerpa pigment caulerpin inhibits HIF-1 activation and mitochondrial respiration. J Nat Prod 72:2104–2109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. 92.

    Vogelstein B, Kinzler KW (2004) Cancer genes and the pathways they control. Nat Med 10:789–799

    Article  CAS  PubMed  Google Scholar 

  93. 93.

    Lemée R, Pesando D, Durand-Clement M, Dubreuil A, Meinesz A, Guerriero A, Pietra F (1993) Preliminary survey of toxicity of the green alga Caulerpa taxifolia introduced into the Mediterranean. J App Phycol 5:485–493

    Article  Google Scholar 

  94. 94.

    Paul VJ, Fenical W (1987) Natural products chemistry and chemical defense in tropical marine algae of the phylum chlorophyta. Bioorg Mar Chem 1:1–29

    Article  CAS  Google Scholar 

  95. 95.

    Azhaguraj A, Milton MJ, Ganesh J, Ramakrishnan M, Antony S (2012) Prediction of biological activity spectra for secondary metabolites from marine Macroalgae Caulerpa Spp (Chlorophyta–Caulerpals. Int J Res J Pharm 3(5):320–323

    CAS  Google Scholar 

  96. 96.

    Guo J, Yuan Y, Lu D, Du B, Xiong L, Shi J, Yang L, Liu W, Yuan X, Zhang G, Wang F (2014) Two natural products, trans-phytol and (22E)-ergosta-6, 9, 22-triene-3β, 5α, 8α-triol, inhibit the biosynthesis of estrogen in human ovarian granulosa cells by aromatase (CYP19). Toxicol App Pharmacol 279(1):23–32

    Article  CAS  Google Scholar 

  97. 97.

    Hong JF, Song YF, Liu Z, Zheng ZC, Chen HJ, Wang SS (2016) Anticancer activity of taraxerol acetate in human glioblastoma cells and a mouse xenograft model via induction of autophagy and apoptotic cell death, cell cycle arrest and inhibition of cell migration. Mol Med Rep 13(6):4541–4548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. 98.

    Wang H, Li YL, Shen WZ, Rui W, Ma XJ, Cen YZ (2007) Antiviral activity of a sulfoquinovosyldiacylglycerol (SQDG) compound isolated from the green alga Caulerpa racemosa. Bota Mar 50:185–190

    CAS  Google Scholar 

  99. 99.

    Ohta K, Mizushima Y, Hirata N, Takemura M, Sugawara F, Matsukage A, Yoshida S, Sakaguchi K (1998) Sulfoquinovosyldiacylglycerol, KM043, a new potent inhibitor of eukaryotic DNA polymerases and HIV-reverse transcriptase type 1 from a marine red alga, Gigartina tenella. Chem Pharm Bull 46:684–686

    Article  CAS  PubMed  Google Scholar 

  100. 100.

    Mayer AM, Paul VJ, Fenical W, Norris JN, De Carvalho MS, Jacobs RS (1993) Phospholipase A2 inhibitors from marine algae. In. Fourteenth international seaweed symposium, Springer, Berlin, pp 521–529

    Google Scholar 

  101. 101.

    Rodrigues JA, De So Vanderlei E, Silva LM, De Araujo IW, De Queiroz IN, De Paula GA, Abreu TM, Ribeiro NA, Bezerra MM, Chaves HV, Lima V (2012) Antinociceptive and anti-inflammatory activities of a sulfated polysaccharide isolated from the green seaweed Caulerpa cupressoides. Pharmacol Rep 64:282–292

    Article  CAS  PubMed  Google Scholar 

  102. 102.

    Rodrigues JA, Queiroz IN, Quindere AL, Vairo BC, Mourao PA, Benevides NM (2011) An antithrombin-dependent sulfated polysaccharide isolated from the green alga Caulerpa cupressoides has in vivo anti-and prothrombotic effects. Ciência Rural 41:634–639

    Article  CAS  Google Scholar 

  103. 103.

    Ghosh P, Adhikari U, Ghosal A, Pujol CA, Carlucci MJ, Damonte EB, Ray B (2004) In vitro anti-herpetic activity of sulfated polysaccharide fractions from Caulerpa racemosa. Phytochem 65:3151–3157

    Article  CAS  Google Scholar 

Download references


RM acknowledges Indian Council of Medical Research (ICMR) for providing financial assistance in terms of Junior Research Fellowship (JRF). SB acknowledges Ministry of Earth Sciences-Drugs from Sea Programme (MoES-DFS), India for financial assistance as JRF. FB acknowledges Department of Science and Technology (DST-INSPIRE), India, and MoES-DFS for research grants. SS acknowledges DST-SERB extra mural grant for financial assistance. All authors duly acknowledge Central University of Punjab, Bathinda.

Author information




RM and SB contributed equally for the preparation of this manuscript. FB contributed in proofreading and polishing of the manuscript. SS coordinated the work and compiled the manuscript.

Corresponding author

Correspondence to Sandeep Singh.

Ethics declarations

Conflict of interest

Richa Mehra declares that she has no conflict of interest. Satej Bhushan declares that he has no conflict of interest. Felix Bast declares that he has no conflict of interest. Sandeep Singh declares that he has no conflict of interest.

Ethical approval

This article doesn’t contain any studies with human participants or animal models performed by any of the authors.

Informed consent

This study didn’t require any formal consent.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Richa Mehra and Satej Bhushan have contributed equally to this work.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mehra, R., Bhushan, S., Bast, F. et al. Marine macroalga Caulerpa: role of its metabolites in modulating cancer signaling. Mol Biol Rep 46, 3545–3555 (2019).

Download citation


  • Cancer
  • Caulerpa
  • Caulerpenyne
  • Secondary metabolites
  • Marine algae
  • Anti-cancer