Skip to main content
Log in

DNA fingerprinting and assessment of some physiological changes in Al-induced Bryophyllum daigremontianum clones

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Aluminum (Al) is one of the most important stress factors that reduce plant productivity in acidic soils. Present work thereby analyzed Al-induced genomic alterations in Bryophyllum daigremontianum clones using RAPD and ISSR markers, and investigated responding changes in photosynthetic pigment (chlorophyll a, b, a/b, total chlorophyll and carotenoid) contents and total soluble protein amounts in plant leaves. The main reason for the use of bulbiferous spurs originated clone plants was to increase reliability and acceptability of RAPD and ISSR techniques in DNA fingerprinting. Raised 40 clone plants were divided into five separate groups each with eight individuals and each experimental group was watered with 0 (control), 0 (acid control), 50, 100 and 200 µM AlCl3-containing Hoagland solutions on alternate days for two and a half months. All plant soils except control group were sprayed with 0.2% sulfuric acid following watering days and this contributed acidic characteristic (pH 4.8) to soil structure. Increase in Al concentrations were accompanied by an increase in total soluble protein amounts, a decrease in photosynthetic pigment contents, and with appearance, disappearance and intensity changes at RAPD and ISSR band profiles. Out of tested RAPD1-25 and ISSR1-15 primers, RAPD8, RAPD9, ISSR2 and ISSR7 primers produced reproducible band profiles that were distinguishable between treatment and control groups. Findings showed that RAPD and ISSR fingerprints have been useful biomarkers for investigation of plant genotoxicity, especially in clone plants. Moreover, if these fingerprints are integrated with other physiological parameters they could become more powerful tools in ecotoxicology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Dogan I, Ozyigit II, Demir G (2014) Influence of aluminum on mineral nutrient uptake and accumulation in Urtica pilulifera L. J Plant Nutr 37:469–481

    Article  CAS  Google Scholar 

  2. Zahedi-Amiri Z, Taravati A, Hejazian LB (2018) Protective effect of Rosa damascena against aluminum chloride-induced oxidative stress. Biol Trace Elem Res 187:1–8

    Google Scholar 

  3. Vardar F, Cabuk E, Ayturk O, Aydin Y (2016) Determination of aluminum induced programmed cell death characterized by DNA fragmentation in Gramineae species. Caryologia 69(2):111–115

    Article  Google Scholar 

  4. Drabek O, Mladkova L, Boruvka L, Szakova J, Nikodem A, Nemecek K (2005) Comparison of water-soluble and exchangeable forms of Al in acid forest soils. J Inorg Biochem 99:1788–1795

    Article  CAS  PubMed  Google Scholar 

  5. Kochian LV, Pineros MA, Hoekenga OA (2005) The physiology, genetics and molecular biology of plant aluminum resistance and toxicity. Plant Soil 274:175–195

    Article  CAS  Google Scholar 

  6. Kochian LV (1995) Cellular mechanisms of aluminum toxicity and resistance in plants. Ann Rev Plant Physiol 46:237–260

    Article  CAS  Google Scholar 

  7. Rengel Z (2004) Aluminium cycling in the soil-plant-animal-human continuum. Biometals 17:669–689

    Article  CAS  PubMed  Google Scholar 

  8. Vardar F, Unal M (2007) Aluminum toxicity and resistance in higher plants, review. Adv Mol Bio 1:1–12

    Google Scholar 

  9. Navascues J, Pérez-Rontomé C, Sánchez DH, Staudinger C, Wienkoop S, Rellán-Álvarez R, Becana M (2012) Oxidative stress is a consequence, not a cause, of aluminum toxicity in the forage legume Lotus corniculatus. New Phytol 193(3):625–636

    Article  CAS  PubMed  Google Scholar 

  10. Chen LS, Qi YP, Liu XH (2005) Effects of aluminum on light energy utilization and photoprotective systems in citrus leaves. Ann Bot-London 96(1):35–41

    Article  CAS  Google Scholar 

  11. Dong B, Sang WL, Jiang X, Zhou JM, Kong FX, Hu W, Wang LS (2002) Effects of aluminum on physiological metabolism and antioxidant system of wheat (Triticum aestivum L.). Chemosphere 47(1):87–92

    Article  CAS  PubMed  Google Scholar 

  12. Horst WJ, Wang YX, Eticha D (2010) The role of the root apoplast in aluminium-induced inhibition of root elongation and in aluminium resistance of plants: a review. Ann Bot-London 106:185–197

    Article  CAS  Google Scholar 

  13. Yamamoto Y, Kobayashi Y, Matsumoto H (2001) Lipid peroxidation is an early symptom triggered by aluminum, but not the primary cause of elongation inhibition in pea roots. Plant Physiol 125(1):199–208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Maron LG, Kirst M, Mao C, Milner MJ, Menossi M, Kochian LV (2008) Transcriptional profiling of aluminum toxicity and tolerance responses in maize roots. New Phytol 179:116–128

    Article  CAS  PubMed  Google Scholar 

  15. Panda SK, Matsumoto H (2010) Changes in antioxidant gene expression and induction of oxidative stress in pea (Pisum sativum L.) under Al stress. Biometals 23(4):753–762

    Article  CAS  PubMed  Google Scholar 

  16. Matsumoto H (2000) Cell biology of aluminum toxicity and tolerance in higher plants. Int Rev Cytol 200:1–46

  17. Panda SK, Yamamoto Y, Kondo H, Matsumoto H (2008) Mitochondrial alterations related to programmed cell death in tobacco cells under aluminium stress. C R Biol 331:597–610

    Article  CAS  PubMed  Google Scholar 

  18. Yamamoto Y, Kobayashi Y, Devi SR, Rikishi S, Matsumoto H (2002) Aluminium toxicity is associated with mitochondrial dysfunction and the production of reactive oxygen species in plant cells. Plant Physiol 128:63–72

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Pour AH, Ozkan G, Balpinar Nalci O, Haliloglu K (2019) Estimation of genomic instability and DNA methylation due to aluminum (Al) stress in wheat (Triticum aestivum L.) using iPBS and CRED-iPBS analyses. Turk J Bot 43(1):27–37

    Article  CAS  Google Scholar 

  20. Von Uexkull HR, Mutert HR (1995) Global extent, development and economic impact of acid soils. Plant Soil 171(1):1–15

    Article  Google Scholar 

  21. Ozyigit II, Vardar F, Yasar U, Akinci S (2013) Long time effects of aluminum and cadmium on growth, leaf anatomy, and photosynthetic pigments of cotton. Commun Soil Sci Plant Anal 44:3076–3091

    Article  CAS  Google Scholar 

  22. Hoagland DR, Arnon DI (1950) The water-culture method for growing plants without soil. Circ Calif Agric Exp Stn 347(2nd edit):32

    Google Scholar 

  23. Arnon DI (1949) Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiol 24(1):1–15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Bradford M (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72(1–2):248–254

    Article  CAS  PubMed  Google Scholar 

  25. Qiu YX, Hong DY, Fu CX, Cameron KM (2004) Genetic variation in the endangered and endemic species Changium smyrnioides (Apiaceae). Biochem Syst Ecol 32:583–596

    Article  CAS  Google Scholar 

  26. Zhang H, Li YH, Hu LY, Wang SH, Zhang FQ, Hu KD (2008) Effects of exogenous nitric oxide donor on antioxidant metabolism in wheat leaves under aluminum stress. Russ J Plant Physl 55(4):469–474

    Article  CAS  Google Scholar 

  27. Ozyigit II, Yilmaz S, Dogan I, Sakcali MS, Tombuloglu G, Demir G (2016) Detection of physiological and genotoxic damages reflecting toxicity in kalanchoe clones. Global NEST J 18(1):223–232

    Article  CAS  Google Scholar 

  28. Mihailovic I, Drazic G, Vucinic GZ (2006) Effects of aluminium on photosynthetic performance in Al-sensitive and Al-tolerant maize inbred lines. Photosynthetica 46:476–480

    Article  CAS  Google Scholar 

  29. Wang L, Fan XW, Pan JL, Huang ZB, Li YZ (2015) Physiological characterization of maize tolerance to low dose of aluminum, highlighted by promoted leaf growth. Planta 242(6):1391–1403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Barnabas B, Kovacs G, Hegedus A, Erdei S, Horvath G (2000) Regeneration of doubled haploid plants from in vitro selected microspores to improve aluminium tolerance in wheat. J Plant Physiol 156(2):217–222

    Article  CAS  Google Scholar 

  31. Tabaldi LA, Nicoloso FT, Castro GY, Cargnelutti D, Gonçalves JF, Rauber R, Skrebensky EC, Schetinger MRC, Morsch VM, Bisognin DA (2007) Physiological and oxidative stress responses of four potato clones to aluminum in nutrient solution. Braz J Plant Physiol 19(3):211–222

    Article  CAS  Google Scholar 

  32. Azmat R, Hasan S (2008) Photochemistry of light harvesting pigments and some biochemical changes under aluminium stress. Pak J Bot 40(2):779–784

    CAS  Google Scholar 

  33. Wang Vinocur WB, Shoseyov O, Altman A (2004) Role of plant heat shock proteins and molecular chaperones in the abiotic stress response. Trends Plant Sci 9:244–252

    Article  PubMed  CAS  Google Scholar 

  34. Vinocur B, Altman A (2005) Recent advances in engineering plant tolerance to abiotic stress: achievements and limitation. Curr Opin Biotech 16:123–132

    Article  CAS  PubMed  Google Scholar 

  35. Kosakivska I, Klymchuk D, Negretzky V, Bluma D, Ustinova A (2008) Stress proteins and ultrastructural characteristics of leaf cells of plants with different types of ecologıcal strategies. Gen Appl Plant Physiol 34(3–4):405–418

    CAS  Google Scholar 

  36. Murillo-Amador B, Cordoba-Matson MV, Villegas-Espinoza JA, Herna´ndez-Montiel LG, Troyo-Die´guez E (2014) Mineral content and biochemical variables of Aloe vera L. under salt stress. PLoS ONE 9(4):e94870

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Salinas C, Handford M, Pauly M, Dupree P, Cardemil L (2016) Structural modifications of fructans in Aloe barbadensis Miller (Aloe vera) grown under water stress. PLoS ONE 11(7):e0159819

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Karimi F, Khataee E (2012) Aluminum elicits tropane alkaloid production and antioxidant system activity in micropropagated Datura innoxia plantlets. Acta Physiol Plant 34(3):1035–1041

    Article  CAS  Google Scholar 

  39. Zafar N, Mujib A, Ali M, Tonk D, Gulzar B (2017) Aluminum chloride elicitation (amendment) improves callus biomass growth and reserpine yield in Rauvolfia serpentina leaf callus. Plant Cell Tissue Org 130(2):357–368

    Article  CAS  Google Scholar 

  40. Rastgoo L, Alemzadeh A (2011) Biochemical responses of gouan (‘Aeluropus littoralis’) to heavy metals stress. Aust J Crop Sci 5(4):375–383

    CAS  Google Scholar 

  41. Zahid HS, Mujib A (2012) Accumulation of vincristine in calcium chloride elicitated Catharanthus roseus cultures. Nat Prod J 2(4):307–315

    Google Scholar 

  42. Malar S, Manikandan R, Favas PJ, Sahi SV, Venkatachalam P (2014) Effect of lead on phytotoxicity, growth, biochemical alterations and its role on genomic template stability in Sesbania grandiflora: a potential plant for phytoremediation. Ecotox Environ Safe 108:249–257

    Article  CAS  Google Scholar 

  43. Shahrtash M, Mohsenzadeh S, Mohabatkar H (2010) Cadmium-induced genotoxicity detected by the random amplification of polymorphism DNA in the maize seedling roots. J Cell Mol Res 2(1):42–48

    Google Scholar 

  44. Ozyigit II, Dogan I, Igdelioglu S, Filiz E, Karadeniz S, Uzunova Z (2016) Screening of damage induced by lead (Pb) in rye (Secale cereale L.)-a genetic and physiological approach. Biotechnol Biotechnol Equip 30(3):489–496

    Article  CAS  Google Scholar 

  45. Cenkci S, Yildiz M, Cigerci IH, Konuk M, Bozdag A (2009) Toxic chemicals-induced genotoxicity detected by random amplified polymorphic DNA (RAPD) in bean (Phaseolus vulgaris L.) seedlings. Chemosphere 76(7):900–906

    Article  CAS  PubMed  Google Scholar 

  46. Kekec G, Sakcali MS, Uzonur I (2010) Assessment of genotoxic effects of Boron on Wheat (Triticum aestivum L.) and Bean (Phaseolus vulgaris L.) using RAPD analysis. Bull Environ Contam Tox 84(6):759–764

    Article  CAS  Google Scholar 

  47. Taspinar MS, Aydin M, Sigmaz B, Yagci S, Arslan E, Agar G (2018) Aluminum-induced changes on DNA damage, DNA methylation and LTR retrotransposon polymorphism in maize. Arab J Sci Eng 43(1):123–131

    Article  CAS  Google Scholar 

  48. Correia S, Matos M, Ferreira V, Martins N, Goncalves S, Romano A, Pinto-Carnide O (2014) Molecular instability induced by aluminum stress in Plantago species. Mutat Res-Gen Toxicol Environ Mutat 770:105–111

    Article  CAS  Google Scholar 

  49. Bojorquez-Quintal JEA, Sánchez-Cach LA, Ku-González A, Santos-Briones C, Medina-Lara MF, Echevarría-Machado I, Muñoz-Sánchez JA, Sotomayor SMTH, Estévez MM (2014) Differential effects of aluminum on in vitro primary root growth, nutrient content and phospholipase C activity in coffee seedlings (Coffea arabica). J Inorg Biochem 134:39–48

    Article  CAS  Google Scholar 

  50. Silva IR, Smyth TJ, Moxley DF, Carter TE, Allen NS, Rufty TW (2000) Aluminum accumulation at nuclei of cells in the root tip. Fluorescence detection using lumogallion and confocal laser scanning microscopy. Plant Physiol 123(2):543–552

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Li Z, Xing D (2011) Mechanistic study of mitochondria dependent programmed cell death induced by aluminum phytotoxicity using fluorescence techniques. J Exp Bot 62(1):331–343

    Article  CAS  PubMed  Google Scholar 

  52. Atienzar FA, Cordi B, Evenden AJ (1999) Qualitative assessment of genotoxicity using random amplified polymorphic DNA: comparison of genomic template stability with key fitness parameters in Daphnia magna exposed to benzo [a] pyrene. Environ Toxicol Chem 18:2275–2282

    CAS  PubMed  Google Scholar 

  53. Bowditch BM, Albright DG, Williams JGK, Braun MJ (1993) Use of randomly amplified polymorphic DNA markers in comparative genome studies. Methods Enzymol 224:293–309

    Google Scholar 

  54. Pan J, Yu L (2011) Effects of Cd or/and Pb on soil enzyme activities and microbial community structure. Ecol Eng 37(11):1889–1894

    Article  Google Scholar 

  55. Atienzar FA, Venier P, Jha AN, Depledge MH (2002) Evaluation of the random amplified polymorphic DNA (RAPD) assay for the detection of DNA damage and mutations. Mutat Res-Gen Toxicol Environ Mutat 521(1):151–163

    Article  CAS  Google Scholar 

  56. Atienzar FA, Cordi B, Donkin ME (2000) Comparison of 442 ultraviolet- induced genotoxicity detected by random amplified polymorphic DNA with chlorophyll fluorescence and growth in a marine macroalgae. Aquat Toxicol 50:1–12

    Article  CAS  PubMed  Google Scholar 

  57. Korpe DA, Aras S (2011) Evaluation of copper-induced stress on eggplant (Solanum melongena L.) seedlings at the molecular and population levels by use of various biomarkers. Mutat Res-Gen Toxicol Environ Mutat 719(1):29–34

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This project is supported by Düzce University Research Fund. Project Number: 2015.05.01.376.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ibrahim Ilker Ozyigit.

Ethics declarations

Conflict of interest

No potential conflict of interest was reported by the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ozyigit, I.I., Kaval, A., Altundag Cakir, E. et al. DNA fingerprinting and assessment of some physiological changes in Al-induced Bryophyllum daigremontianum clones. Mol Biol Rep 46, 2703–2711 (2019). https://doi.org/10.1007/s11033-019-04714-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-019-04714-w

Keywords

Navigation