Skip to main content
Log in

Chemokine gene polymorphisms association with increased risk of type 2 diabetes mellitus in Tatar ethnic group, Russia

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Recent studies have shown that chemokines play an important role in the development of chronic inflammation in adipose tissue, obesity pathogenesis, glucose intolerance and type 2 diabetes. It has also been revealed that some SNPs in chemokine genes are associated with obesity, insulin resistance, type 2 diabetes and diabetes complications in different ethnic groups. The aim of this study was to determine the associations between SNPs in chemokine genes and type 2 diabetes in participants of Tatar ethnic group, living in Bashkortostan. Case–control and cross-sectional study were included in our study design. Five SNPs were genotyped in 440 type 2 diabetes (160 men and 280 women), 58.8 ± 9.2 years old (mean ± SD), BMI 29.3 ± 3.9 kg/m2 (mean ± SD) patients of Tatar ethnicity, and a control group of 500 Tatars (180 men and 320 women), 55.2 ± 11.6 years old (mean ± SD), BMI 25.9 ± 4.3 kg/m2 (mean ± SD). The SNPs rs6749704 in CCL20 [odds ratio (OR) = 2.77 (95% CI 1.81–4.25), р = 0.0001], rs2107538 in CCL5 [odds ratio (OR) = 1.80 (95% CI 1.46–2.22), p = 0.0001] were significantly associated with type 2 diabetes. Regression analysis revealed that rs1696941 in CCL11 was associated with the onset age and duration of type 2 diabetes as well as with HbA1c level (p = 0.034, p = 0.036 and p = 0.0054, respectively). The SNPs rs223828 in CCL17 and rs6749704 in CCL20 were correlated with obesity as estimated by BMI (p = 0.0004, p = 0.029, respectively). Rs223828 in CCL17 revealed the association with postprandial glucose level (p = 0.024) and HbA1c (p = 0.008). These data demonstrate that variants of chemokine genes are associated with type 2 diabetes and obesity of Tatar ethnic group inhabiting Bashkortostan Republic. Novel associations of the polymorphic loci in CCL20 (rs6749704) and CCL5 (rs2107538) genes with type 2 diabetes had been identified as a result of the conducted research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AIC:

Akaike information criterion

T2D:

Type 2 diabetes

ICAM:

Intercellular adhesion molecule 1

CCL2 :

Gene of chemokine C–C motif ligand 2

CCL5 :

Gene of chemokine C–C motif ligand 5

CCL11 :

Gene of chemokine C–C motif ligand 11

CCL17 :

Gene of chemokine C–C motif ligand 17

CCL20 :

Gene of chemokine C–C motif ligand 20

CCL:

Chemokine C–C motif ligand

CCR:

Chemokine receptor

F:

Forward

R:

Reverse

RANTES:

Regulated on activation, normal T cell expressed and secreted

TLR:

Toll-like receptor

VCAM:

Vascular cell adhesion molecule

References

  1. World Health Organization (1999) Department of Noncommunicable Disease Surveillance, diagnosis and classification of diabetes mellitus and its complications. World Health Organization, Geneva

    Google Scholar 

  2. Sarwar N, Gao P, Seshasai SR, Gobin R, Kaptoge S, Di Angelantonio E (2010) Emerging Risk Factors Collaboration. Diabetes mellitus, fasting blood glucose concentration, and risk of vascular disease: a collaborative metaanalysis of 102 prospective studies. Lancet 375:2215–2222. https://doi.org/10.1016/S0140-6736(10)60484-9

    Article  CAS  PubMed  Google Scholar 

  3. Yau JW, Rogers SL, Kawasaki R, Lamoureux EL, Kowalski JW, Bek T, Chen SJ, Dekker JM, Fletcher A, Grauslund J, Haffner S, Hamman RF, Ikram MK, Kayama T, Klein BE, Klein R, Krishnaiah S, Mayurasakorn K, O’Hare JP, Orchard TJ, Porta M, Rema M, Roy MS, Sharma T, Shaw J, Taylor H, Tielsch JM, Varma R, Wang JJ, Wang N, West S, Xu L, Yasuda M, Zhang X, Mitchell P, Wong TY (2012) Global prevalence and major risk factors of diabetic retinopathy. Diabetes Care 35:556–564. https://doi.org/10.2337/dc11-1909

    Article  PubMed  PubMed Central  Google Scholar 

  4. Coresh J, Astor BC, Greene T, Eknoyan G, Levey AS (2013) Prevalence of chronic kidney disease and decreased kidney function in the adult US population: Third National Health and Nutrition Examination Survey. Am J Kidney Dis 41:1–12

    Article  Google Scholar 

  5. Zhang P, Lu J, Jing Y, Tang S, Zhu D, Bi Y (2016) Global epidemiology of diabetic foot ulceration: a systematic review and meta-analysis. Ann Med 49:106–116. https://doi.org/10.1080/07853890.2016.1231932

    Article  PubMed  Google Scholar 

  6. IDF (2017) IDF diabetes atlas 8th edn

  7. Bommer C, Sagalova V, Heesemann E, Manne-Goehler J, Atun R, Bärnighausen T, Davies J, Vollmer S (2018) Global economic burden of diabetes in adults: projections from 2015 to 2030. Diabetes Care 41:963–970. https://doi.org/10.2337/dc17-1962

    Article  PubMed  Google Scholar 

  8. Dedov I, Shestakova M, Benedetti MM, Simon D, Pakhomov I, Galstyan G (2016) Prevalence of type 2 diabetes mellitus (T2DM) in the adult Russian population (NATION study). Diabetes Res Clin Pract 115:90–95. https://doi.org/10.1016/j.diabres.2016.02.010

    Article  PubMed  Google Scholar 

  9. Ferrante AW Jr (2007) Obesity-induced inflammation: a metabolic dialogue in the language of inflammation. J Intern Med 262:408–414

    Article  CAS  PubMed  Google Scholar 

  10. Hotamisligil GS (2006) Inflammation and metabolic disorders. Nature 444:860–867. https://doi.org/10.1038/nature05485

    Article  CAS  PubMed  Google Scholar 

  11. Neels JG, Olefsky JM (2006) Inflamed fat: what starts the fire? J Clin Invest 116:33–35. https://doi.org/10.1172/JCI27280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Hotamisligil GS, Peraldi P, Budavari A, Ellis R, White MF, Spiegelman BM (1996) IRS-1-mediated inhibition of insulin receptor tyrosine kinase activity in TNF-α- and obesity-induced insulin resistance. Science 271:665–668

    Article  CAS  PubMed  Google Scholar 

  13. Weisberg SP, McCann D, Desai M, Rosenbaum M, Leibel RL, Ferrante AW Jr (2003) Obesity is associated with macrophage accumulation in adipose tissue. J Clin Invest 112:1796–1808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Xu H, Barnes GT, Yang Q, Tan G, Yang D, Chou CJ, Sole J, Nichols A, Ross JS, Tartaglia LA, Chen H (2003) Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance. J Clin Invest 112:1821–1830

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Sell H, Eckel J (2010) Adipose tissue inflammation: novel insight into the role of macrophages and lymphocytes. Curr Opin Clin Nutr Metab Care 13:366–370. https://doi.org/10.1097/MCO.0b013e32833aab7f

    Article  PubMed  Google Scholar 

  16. Harman-Boehm I, Blüher M, Redel H, Sion-Vardy N, Ovadia S, Avinoach E, Shai I, Klöting N, Stumvoll M, Bashan N, Rudich A (2007) Macrophage infiltration into omental versus subcutaneous fat across different populations: effect of regional adiposity and the comorbidities of obesity. J Clin Endocrinol Metab 92:2240–2247. https://doi.org/10.1210/jc.2006-1811

    Article  CAS  PubMed  Google Scholar 

  17. Xu L, Kitade H, Ni Y, Ota T (2015) Roles of chemokines and chemokine receptors in obesity-associated insulin resistance and nonalcoholic fatty liver disease. Biomolecules 5:1563–1579. https://doi.org/10.3390/biom5031563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Titos E, Rius B, López-Vicario C, Alcaraz-Quiles J, García-Alonso V, Lopategi A, Dalli J, Lozano JJ, Arroyo V, Delgado S, Serhan CN, Clària J (2016) Signaling and immunoresolving actions of resolvin D1 in inflamed human visceral adipose tissue. J Immunol 197:3360–3370. https://doi.org/10.4049/jimmunol.1502522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kurokawa J, Nagano H, Ohara O, Kubota N, Kadowaki T, Arai S, Miyazaki T (2011) Apoptosis inhibitor of macrophage (AIM) is required for obesity-associated recruitment of inflammatory macrophages into adipose tissue. Proc Natl Acad Sci USA 108:12072–71207. https://doi.org/10.1073/pnas.1101841108

    Article  PubMed  Google Scholar 

  20. Mothe-Satney I, Filloux C, Amghar H, Pons C, Bourlier V, Galitzky J, Grimaldi PA, Féral CC, Bouloumié A, Van Obberghen E, Neels JG (2012) Adipocytes secrete leukotrienes: contribution to obesity-associated inflammation and insulin resistance in mice. Diabetes 61:2311–2319. https://doi.org/10.2337/db11-1455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Mathis D (2013) Immunological goings-on in visceral adipose tissue. Cell Metab 17:851–859. https://doi.org/10.1016/j.cmet.2013.05.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Taniyama Y, Griendling KK (2003) Reactive oxygen species in the vasculature: molecular and cellular mechanisms. Hypertension 42:1075–1081. https://doi.org/10.1161/01.hyp.0000100443.09293.4f

    Article  CAS  PubMed  Google Scholar 

  23. Miller MA, Cappuccio FP (2006) Cellular adhesion molecules and their relationship with measures of obesity and metabolic syndrome in a multiethnic population. Int J Obes 30:1176–1182. https://doi.org/10.1038/sj.ijo.0803264

    Article  CAS  Google Scholar 

  24. Kanda H, Tateya S, Tamori Y, Kotani K, Hiasa K, Kitazawa R, Kitazawa S, Miyachi H, Maeda S, Egashira K, Kasuga M (2006) MCP-1 contributes to macrophage infiltration into adipose tissue, insulin resistance, and hepatic steatosis in obesity. J Clin Investig 116:1494–1505. https://doi.org/10.1172/jci26498

    Article  CAS  PubMed  Google Scholar 

  25. Sartipy P, Loskutoff DJ (2003) Monocyte chemoattractant protein 1 in obesity and insulin resistance. Proc Natl Acad Sci USA 100:7265–7270. https://doi.org/10.1073/pnas.1133870100

    Article  CAS  PubMed  Google Scholar 

  26. Nomura S, Shouzu A, Omoto S, Nishikawa M, Fukuhara S (2000) Significance of chemokines and activated platelets in patients with diabetes. Clin Exp Immunol 121:437–443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Schwartz MW, Seeley RJ, Tschöp MH, Woods SC, Morton GJ, Myers MG, D’Alessio D (2013) Cooperation between brain and islet in glucose homeostasis and diabetes. Nature 503:59–66. https://doi.org/10.1038/nature12709

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Jibiki T, Terai M, Shima M, Ogawa A, Hamada H, Kanazawa M, Yamamoto S, Oana S, Kohno Y (2001) Monocyte chemoattractant protein 1 gene regulatory region polymorphism and serum levels of monocyte chemoattractant protein 1 in Japanese patients with Kawasaki disease. Arthritis Rheum 44(9):2211–2212. https://doi.org/10.1002/1529-0131(200109)44:9%3C2211::AID-ART375%3E3.0.CO;2-A

    Article  CAS  PubMed  Google Scholar 

  29. McDermott DH, Beecroft MJ, Kleeberger CA, Al-Sharif FM, Ollier ER, Zimmerman PA, Boatin BA, Leitman SF, Detels R, Hajeer AH, Philip M. Murphy PM (2000) Chemokine RANTES promotor polymorphism affects risk of both HIV infection and disease progression in the Multicenter AIDS Cohort Study. AIDS 14:2671–2678

    Article  CAS  PubMed  Google Scholar 

  30. Ye Y, Yang X, Long B, Pang H, Zhu Y, Zhang S (2018) Association between a CCL17 genetic variant and risk of coronary artery disease in a Chinese Han population. Circ J 82:224–231. https://doi.org/10.1253/circj.CJ-17-0190

    Article  Google Scholar 

  31. Yuasa S, Maruyama T, Yamamoto Y, Hirose H, Kawai T, Matsunaga-Irie S, Itoh H (2009) MCP-1 gene A-2518G polymorphism and carotid artery atherosclerosis in patients with type 2 diabetes. Diabetes Res Clin Pract 86:193–198. https://doi.org/10.1016/j.diabres.2009.09.001

    Article  CAS  PubMed  Google Scholar 

  32. Gustafson B, Hammarstedt A, Andersson CX, Smith U (2007) Inflamed adipose tissue: a culprit underlying the metabolic syndrome and atherosclerosis. Arterioscler Thromb Vasc Biol 27:2276–2283

    Article  CAS  PubMed  Google Scholar 

  33. Kouyama K, Miyake K, Zenibayashi M, Hirota Y, Teranishi T, Tamori Y, Kanda H, Sakaguchi K, Ohara T, Kasuga M (2008) Association of serum MCP-1 concentration and MCP-1 polymorphism with insulin resistance in Japanese individuals with obese type 2 diabetes. Kobe J Med Sci 5:345–354

    Google Scholar 

  34. Simeoni E, Hoffmann MM, Winkelmann BR, Ruiz J, Fleury S, Boehm BO, März W, Vassalli G (2004) Association between the A-2518G polymorphism in the monocyte chemoattractant protein-1 gene and insulin resistance and type 2 diabetes mellitus. Diabetologia 47:1574–1580

    Article  CAS  PubMed  Google Scholar 

  35. Guzmán-Ornelas MO, Petri MH, Vázquez-Del Mercado M, Chavarría-Ávila E, Corona-Meraz FI, Ruíz-Quezada SL, Madrigal-Ruíz PM, Castro-Albarrán J, Sandoval-García F, Navarro-Hernández RE (2016) CCL2 serum levels and adiposity are associated with the polymorphic phenotypes-2518A on CCL2 and 64ILE on CCR2 in a Mexican population with insulin resistance. J Diabetes Res. https://doi.org/10.1155/2016/5675739

    Article  PubMed  Google Scholar 

  36. Raina P, Matharoo K, Bhanwer AJ (2015) Monocyte chemoattractant protein-1 (MCP-1) g.-2518A>G polymorphism and susceptibility to type 2 diabetes (T2D) and end stage renal disease (ESRD) in the North-West Indian population of Punjab. Ann Hum Biol 42:276–282. https://doi.org/10.3109/03014460.2014.941932

    Article  PubMed  Google Scholar 

  37. Moon JY, Jeong L, Lee S, Jeong K, Lee T, Ihm CG, Suh J, Kim J, Jung YY, Chung JH (2007) Association of polymorphisms in monocyte chemoattractant protein-1 promotor with diabetic kidney failure in Korean patients with type 2 diabetes mellitus. J Korean Med Sci 22:810–814. https://doi.org/10.3346/jkms.2007.22.5.810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ahluwalia TS, Khullar M, Ahuja M, Kohli HS, Bhansali A, Mohan V, Venkatesan R, Rai TS, Sud K, Singal PK (2009) Common variants of inflammatory cytokine genes are associated with risk of nephropathy in type 2 diabetes among Asian Indians. PLoS ONE 4:e5168. https://doi.org/10.1371/journal.pone.0005168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Su N, Zhao N, Wang G, Wang L, Zhang Y, Li R, Liu Y, Yang X, Li C, Hou M (2018) Association of MCP-1 rs1024611 polymorphism with diabetic foot ulcers. Medicine 97:e11232. https://doi.org/10.1097/MD.0000000000011232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Angeles-Martínez J, Posadas-Sánchez R, Álvarez-León E, Villarreal-Molina T, Cardoso-Saldaña G, Fragoso JM, Juárez-Rojas JG, Medina-Urrutia A, Posadas-Romero C, Vargas-Alarcón G (2015) Monocyte chemoattractant protein-1 gene (MCP-1) polymorphisms are associated with risk of premature coronary artery disease in Mexican patients from the Genetics of Atherosclerotic Disease (GEA) study. Immunol Lett 167:125–130. https://doi.org/10.1016/j.imlet.2015.08.003

    Article  CAS  PubMed  Google Scholar 

  41. Teler J, Tarnowski M, Safranow K, Maciejewska A, Sawczuk M, Dziedziejko V, Sluczanowska-Glabowska S, Pawlik A (2017) CCL2, CCL5, IL4 and IL15 gene polymorphisms in women with gestational diabetes mellitus. Horm Metab Res 49:10–15. https://doi.org/10.1055/s-0042-111436

    Article  CAS  PubMed  Google Scholar 

  42. Cai G, Zhang B, Weng W, Shi G, Huang Z (2015) The association between the MCP-1 −2518A/G polymorphism and ischemic heart disease and ischemic stroke: a meta-analysis of 28 research studies involving 21 524 individuals. Mol Biol Rep 42:997–1012. https://doi.org/10.1007/s11033-014-3836-8

    Article  CAS  PubMed  Google Scholar 

  43. Nasibullin TR, Belonogova VA, Tuktarova IA, Nikolaeva IE, Karamova IM, Mustafina OE (2011) Association of polymorphic markers of CCL2 gene with essential hypertension. Genetika 47:1262–1266

    CAS  PubMed  Google Scholar 

  44. Dabrowska-Zamojcin E, Romanowski M, Dziedziejko V, Maciejewska-Karlowska A, Sawczuk M, Safranow K, Domanski L, Pawlik A (2016) CCL2 gene polymorphism is associated with post-transplant diabetes mellitus. Int Immunopharmacol 32:62–65. https://doi.org/10.1016/j.intimp.2016.01.011

    Article  CAS  PubMed  Google Scholar 

  45. Xu X, Wang L, Liu H, Xu C, Zhang P, Yong F, Shi Y (2013) Association of chemokines and their receptors genes polymorphisms with risk of myocardial infarction. Chin J Med Genet 30:601–607. https://doi.org/10.3760/cma.j.issn.1003-9406.2013.05.021

    Article  CAS  Google Scholar 

  46. Liang C, Ni G, Ma J, Liu H, Mao Z, Sun H, Zhang X (2017) Impact of tag single nucleotide polymorphisms (SNPs) in CCL11 gene on risk of subtypes of ischemic stroke in Xinjiang Han populations. Med Sci Monit 23:4291–4298. https://doi.org/10.12659/MSM.905942

    Article  PubMed  PubMed Central  Google Scholar 

  47. Roy S, Das S, Munshi A, Kaul S, Jyothy A (2014) Association of −1382A>G CCL11 gene variant with ischemic stroke, its subtypes and hemorrhagic stroke in a South Indian population. Neurol India 62:387–392. https://doi.org/10.4103/0028-3886.141259

    Article  PubMed  Google Scholar 

  48. Mathew CG (1985) The isolation of high molecular weight eukaryotic DNA. Methods Mol Biol 2:31–34

    CAS  PubMed  Google Scholar 

  49. Open database of single nucleotide polymorphisms (SNPs) and multiple small-scale variations that include insertions/deletions, microsatellites, and non-polymorphic variants. The National Center for Biotechnology Information advances science and health by providing access to biomedical and genomic information (US), Bethesda. http://www.ncbi.nlm.nih.gov/projects/SNP/

  50. Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D, Maller J, Sklar P, de Bakker PI, Daly MJ, Sham PC (2007) PLINK: a toolset for whole-genome association and population-based linkage analysis. Am J Hum Genet 81:559–575. https://doi.org/10.1086/519795

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Duffaut C, Zakaroff-Girard A, Bourlier V, Decaunes P, Maumus M, Chiotasso P, Sengenès C, Lafontan M, Galitzky J, Bouloumié A (2009) Interplay between human adipocytes and T lymphocytes in obesity: CCL20 as an adipochemokine and T lymphocytes as lipogenic modulators. Arterioscler Thromb Vasc Biol 29:1608–1614. https://doi.org/10.1161/ATVBAHA.109.192583

    Article  CAS  PubMed  Google Scholar 

  52. Nickel RG, Casolaro V, Wahn U, Beyer K, Barnes KC, Plunkett BS, Freidhoff LR, Sengler C, Plitt JR, Schleimer RP, Caraballo L, Naidu RP, Levett PN, Beaty TH, Huang SK (2000) Atopic dermatitis is associated with a functional mutation in the promotor of the C-C chemokine RANTES. J Immunol 164:1612–1616. https://doi.org/10.4049/jimmunol.164.3.1612

    Article  CAS  PubMed  Google Scholar 

  53. Jeong KH, Moon JY, Chung JH, Kim YH, Lee TW (2010) Significant associations between CCL5 gene polymorphisms and post-transplantational diabetes mellitus in Korean renal allograft recipients. Am J Nephrol 32:356–361

    Article  CAS  PubMed  Google Scholar 

  54. Simeoni E, Winkelmann BR, Hoffmann MM, Fleury S, Ruiz J, Kappenberger L, Marz W, Vassalli G (2004) Association of RANTES G-403A gene polymorphism with increased risk of coronary arteriosclerosis. Eur Heart J 25:1438–1446. https://doi.org/10.1016/j.ehj.2004.05.005

    Article  CAS  PubMed  Google Scholar 

  55. Brikos C, O’Neill LA (2008) Signalling of toll-like receptors. Handb Exp Pharmacol 183:21–50. https://doi.org/10.1016/j.cyto.2008.07.010

    Article  CAS  Google Scholar 

  56. Vasudevan AR, Wu H, Xydakis AM, Jones PH, Smith EO, Sweeney JF, Corry DB, Ballantyne CM (2006) Eotaxin and obesity. J Clin Endocrinol Metab 91:256–261. https://doi.org/10.1097/01.MJX.0000406042.33082.fc

    Article  CAS  PubMed  Google Scholar 

  57. Adar T, Shteingart S, Ben Ya’acov A, Bar-Gil Shitrit A, Goldin E (2014) From airway inflammation to inflammatory bowel disease: eotaxin-1, a key regulator of intestinal inflammation. Clin Immunol 153:199–208. https://doi.org/10.1016/j.clim.2014.04.012

    Article  CAS  PubMed  Google Scholar 

  58. Khavinson VK, Kuznik BI, Tarnovskaya SI, Linkova NS (2015) Peptides and CCL11 and HMGB1 as molecular markers of aging: literature review and own data. Adv Gerontol 5:133–140. https://doi.org/10.1134/S2079057015030078

    Article  Google Scholar 

  59. Katakura T, Miyazaki M, Kobayashi M, Herndon DN, Suzuki F (2004) CCL17 and IL-10 as effectors that enable alternatively activated macrophages to inhibit the generation of classically activated macrophages. J Immunol 172:1407–1413. https://doi.org/10.4049/jimmunol.172.3.1407

    Article  CAS  PubMed  Google Scholar 

  60. Galimberti D, Scalabrini D, Fenoglio C, De Riz M, Comi C, Venturelli E, Cortini F, Piola M, Leone M, Dianzani U, D’Alfonso S, Monaco F, Bresolin N, Scarpini EJ (2008) Gender-specific influence of the chromosome 16 chemokine gene cluster on the susceptibility to multiple sclerosis. Neurol Sci 267:86–90

    Article  CAS  Google Scholar 

  61. Mraz M, Lacinova Z, Drapalova J, Haluzikova D, Horinek A, Matoulek M, Trachta P, Kavalkova P, Svacina S, Haluzik MJ (2011) The effect of very-low-calorie diet on mRNA expression of inflammation-related genes in subcutaneous adipose tissue and peripheral monocytes of obese patients with type 2 diabetes mellitus. Clin Endocrinol Metab 96:E606–E613

    Article  CAS  Google Scholar 

  62. Loginova MA, Paramonov IV, Pavlov VN, Safuanova GS (2016) Genetic characteristics of the population living in the territory of the Republic of Bashkortostan. Russ J Transplantol Artif Organs 18:58–66. https://doi.org/10.15825/1995-1191-2016-1-58-66

    Article  Google Scholar 

Download references

Acknowledgements

The study was supported by Russian Foundation for Basic Research (Grant No. 18-015-00050) and Federal Agency for Scientific Organizations, bioresource collection support program.

Author information

Authors and Affiliations

Authors

Contributions

TVM: conceptualization; DSA: data curation; OEM: formal analysis; TVM: funding acquisition; OVK and DSA: investigation; OVK: methodology; OEM: project administration; TVM: supervision; OEM: validation; OVK: writing—original draft; DSA: writing—review and editing.

Corresponding author

Correspondence to Diana S. Avzaletdinova.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kochetova, O.V., Avzaletdinova, D.S., Morugova, T.V. et al. Chemokine gene polymorphisms association with increased risk of type 2 diabetes mellitus in Tatar ethnic group, Russia. Mol Biol Rep 46, 887–896 (2019). https://doi.org/10.1007/s11033-018-4544-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-018-4544-6

Keywords

Navigation