Skip to main content
Log in

Hemp (Marijuana) reverted Copper-induced toxic effects on the essential fatty acid profile of Labeo rohita and Cirrhinus mrigala

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Heavy metals pollution affects the nutritive value of fish. This study examined if the inclusion of dietary hempseed (HS) and hempseed oil (HO) in the diet of the fish could revert the copper-induced toxic effects on muscle fatty acid profile of rohu (Labeo rohita) and mrigal (Cirrhinus mrigala). Fingerlings of both species were exposed to a sub-lethal concentration of copper i.e., 20% of LC50 (1.34 ppm for rohu and 1.52 ppm for mrigal) for 96 h for 30 days. Following exposure, fish were maintained on graded levels of HO (1, 2 and 3%) or on HS (5, 10 and 15%) for 50 days. Copper exposure showed a significant effect on the fatty acid composition of both species; increased their saturated (SFA) to unsaturated (USFA) and altered their omega-3/omega-6 (ω-3/ω-6) ratios. However, feeding graded levels of hempseed products reverted the toxic effects of copper on the fatty acid profile of both the species, significantly increased muscle total fatty acid contents, improved ω-3/ω-6 ratios, and decreased SFA / USFA ratio in % inclusion dependent manner. Furthermore, hempseed product showed a species-specific effect on USFA. The ω-3/ω-6 ratios decreased in the muscle of C. mrigala whereas an increasing trend with an increase in hempseed product % inclusion was observed in L. rohita. Moreover, HS showed a higher impact on both species as compared to HO. With the findings of this study, hempseed product could be recommended as a feed ingredient for enhancing the essential fatty acid contents of fish which in turn can have a good impact on consumer health.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bays H, Lansing A (1994) Fish oil (omega-3 fatty acids) in treatment of hypertriglyceridemia. A practical approach for the primary care physician. J Kentucky Med Assoc 92(3):105–108

    CAS  Google Scholar 

  2. Işik O, Sarihan E, Kuşvuran E, Gül Ö, Erbatur O (1999) Comparison of the fatty acid composition of the freshwater fish larvae Tilapia zillii, the rotifer Brachionus calyciflorus, and the microalgae Scenedesmus abundans, Monoraphidium minitum and Chlorella vulgaris in the algae-rotifer-fish larvae food chains. Aquaculture 174(3–4):299–311

    Article  Google Scholar 

  3. Saba G, Muhammad Z (2000) Determination of omega-3 fatty acid composition in freshwater fish. Int J Agric Biol 4:342–343

    Google Scholar 

  4. Ugoala C, Ndukwe G, Audu T (2009) Investigation of the constituent fatty acids of some freshwater fishes common in Nigeria. Braz J Aqua Sci Technol 13(1):65–70

    Article  CAS  Google Scholar 

  5. Simopoulos AP (2002) Omega-3 fatty acids in inflammation and autoimmune diseases. J Am Col Nutr 21(6):495–505

    Article  CAS  Google Scholar 

  6. Mensink RP, Katan MB (1992) Effect of dietary fatty acids on serum lipids and lipoproteins. A meta-analysis of 27 trials. Arterioscler Thromb 12(8):911–919

    Article  CAS  PubMed  Google Scholar 

  7. Montaño N, Gavino G, Gavino VC (2001) Polyunsaturated fatty acid contents of some traditional fish and shrimp paste condiments of the Philippines. Food Chem 75(2):155–158

    Article  Google Scholar 

  8. Lauritzen LA, Hansen HS, Jørgensen MH, Michaelsen KF (2001) The essentiality of long chain n-3 fatty acids in relation to development and function of the brain and retina. Prog Lipid Res 40(1):1–94

    Article  CAS  PubMed  Google Scholar 

  9. Hardman WE (2004) (n-3) fatty acids and cancer therapy. J Nutr 134(12):3427S–3430S

    Article  CAS  PubMed  Google Scholar 

  10. Nugent AP (2004) The metabolic syndrome. Nutrit Bul 29(1):36–43

    Article  Google Scholar 

  11. Cole GM, Lim GP, Yang F, Teter B, Begum A, Ma Q, Harris-White ME, Frautschy SA (2005) Prevention of Alzheimer’s disease: Omega-3 fatty acid and phenolic anti-oxidant interventions. Neurobiol Aging 26(1):133–136

    Article  CAS  PubMed  Google Scholar 

  12. Osler M, Andreasen AH, Hoidrup S (2003) No inverse association between fish consumption and risk of death from all-causes, and incidence of coronary heart disease in middle-aged, Danish adults. J Clin Epidemiol 56(3):274–279

    Article  PubMed  Google Scholar 

  13. Sidhu KS (2003) Health benefits and potential risks related to consumption of fish or fish oil. Regul Toxicol Pharmacol 38(3):336–344

    Article  CAS  PubMed  Google Scholar 

  14. Yabanli M (2013) Assessment of the heavy metal contents of Sardina pilchardus sold in Izmir, Turkey. Ekoloji 22(87):10–15

    Article  CAS  Google Scholar 

  15. Srivastava R, Srivastava N (2008) Changes in nutritive value of fish, Channa punctatus after chronic exposure to zinc. J Environ Biol 29(3):299

    CAS  PubMed  Google Scholar 

  16. Eisler R (1988) Arsenic hazards to fish, wildlife, and invertebrates: a synoptic review. 1988: Fish and Wildlife Service, US Department of the Interior

  17. Kishe M, Machiwa J (2003) Distribution of heavy metals in sediments of Mwanza Gulf of Lake Victoria, Tanzania. Environ Int 28(7):619–625

    Article  CAS  PubMed  Google Scholar 

  18. Grosell M, McGeer J, Wood CM (2001) Plasma copper clearance and biliary copper excretion are stimulated in copper-acclimated trout. Am J Physiol-Regul Integ Comp Physiol 280(3):R796–R806

    Article  CAS  Google Scholar 

  19. Grosell M, Blanchard J, Brix K, Gerdes R (2007) Physiology is pivotal for interactions between salinity and acute copper toxicity to fish and invertebrates. Aquatic Toxicol 84(2):162–172

    Article  CAS  Google Scholar 

  20. Tchounwou PB, Yedjou CG, Patlolla AK, Sutton DJ (2012) Heavy metal toxicity and the environment. Molecular, clinical and environmental toxicology Springer, New York. pp 133–164

    Chapter  Google Scholar 

  21. Shaw BJ, Al-Bairuty G, Handy RD (2012) Effects of waterborne copper nanoparticles and copper sulphate on rainbow trout, (Oncorhynchus mykiss): physiology and accumulation. Aquatic Toxicol 116:90–101

    Article  CAS  Google Scholar 

  22. Dar ZA, Borana K (2014) Effect of sub lethal doses of copper sulphate on certain haematological parameters of common carp, Cyprinus carpio. Int J Rec Sci Res 5(2):332–335

    Google Scholar 

  23. Wang C, Zhang F, Cao W, Wang J (2014) The identification of metallothionein in rare minnow (Gobiocypris rarus) and its expression following heavy metal exposure. Environ Toxicol Pharmacol 37(3):1283–1291

    Article  CAS  PubMed  Google Scholar 

  24. Pereira TCB, Campos MM, Bogo MR (2016) Copper toxicology, oxidative stress and inflammation using zebrafish as experimental model. J Appl Toxicol 36(7):876–885

    Article  CAS  PubMed  Google Scholar 

  25. Singh A, Jain D, Kumar P (2010) Determination of LC50 of cadmium chloride in Heteropneustes fossilis. GERF Bull Biosci 1(1):21–24

    Google Scholar 

  26. Aboul-Ela HM, Saad AA, El-Sikaily AM, Zaghloul TI (2011) Oxidative stress and DNA damage in relation to transition metals overload in Abu-Qir Bay, Egypt. J Gen Eng Biotechnol 9(1):51–58

    Article  CAS  Google Scholar 

  27. Shahidi F, Zhong Y (2010) Novel antioxidants in food quality preservation and health promotion. Eur J Lipid Sci Technol 112(9):930–940

    Article  CAS  Google Scholar 

  28. Small E (2017) Classification of Cannabis sativa L. in Relation to Agricultural, Biotechnological, Medical and Recreational Utilization, in Cannabis sativa L. Bot Biotechnol Springer pp 1–62

  29. Chandra S. Lata H, ElSohly MA, Walker LA, Potter D (2017) Cannabis cultivation: methodological issues for obtaining medical-grade product. Epilepsy Behav 70:302–312

    Article  PubMed  Google Scholar 

  30. Callaway J (2004) Hempseed as a nutritional resource: an overview. Euphytica 140(1–2):65–72

    Article  Google Scholar 

  31. Orhan I, Kusmenoglu S, Sener B (2000) GC-MS analysis of the seed oil of Cannabis sativa L. cultivated in Turkey. Eczacilik Fakultesi Dergisi-Gazi Universitesi 17(2):79–82

    CAS  Google Scholar 

  32. Borhade S (2013) Chemical Composition and Characterization of Hemp (Cannabis sativa) Seed oil and essential fatty acids by HPLC Method. Arch Appl Sci Res 5(1):5–8

    CAS  Google Scholar 

  33. Isahq MS, Afridi MS, Ali J, Hussain MM, Ahmad S, Kanwal F (2015) Proximate composition, phytochemical screening, GC-MS studies of biologically active cannabinoids and antimicrobial activities of Cannabis indica. Asian Pac J Trop Dis 5(11):897–902

    Article  CAS  Google Scholar 

  34. Kriese U. Schumann E, Weber W, Beyer M, Brühl L (2004) Oil content, tocopherol composition and fatty acid patterns of the seeds of 51 Cannabis sativa L. genotypes. Euphytica 137(3):339–351

    Article  CAS  Google Scholar 

  35. Mráz J, Pickova J (2011) Factors influencing fatty acid composition of common carp (Cyprinus carpio) muscle. Neuroendocrinol Lett 32(Suppl. 2):3–8

    PubMed  Google Scholar 

  36. Poitevin E (2016) Official methods for the determination of minerals and trace elements in infant formula and milk products: a review. J AOAC Int 99(1):42–52

    Article  CAS  PubMed  Google Scholar 

  37. Mansbridge R, Blake J (1997) Nutritional factors affecting the fatty acid composition of bovine milk. Brit J Nutrit 78(1):S37–S47

    Article  CAS  PubMed  Google Scholar 

  38. Kamler E, Krasicka B, Rakusa-Suszczewski S (2001) Comparison of lipid content and fatty acid composition in muscle and liver of two notothenioid fishes from Admiralty Bay (Antarctica): an eco-physiological perspective. Polar Biol 24(10):735–743

    Article  Google Scholar 

  39. Sargent J, Bell J, Bell M, Henderson R, Tocher D (1995) Requirement criteria for essential fatty acids. J Applied Ichthyol 11(3-4):183–198

    Article  CAS  Google Scholar 

  40. Puustinen T, Punnonen K, Uotila P (1985) The fatty acid composition of 12 North-European fish species. Acta Medica Scandinavica 218(1):59–62

    Article  CAS  PubMed  Google Scholar 

  41. Ahigren G. Sonesten L, Boberg M, Gustafsson L (1996) Fatty acid content of some freshwater fish in lakes of different trophic levels–a bottom-up effect? Ecol Freshwater Fish 5(1):15–27

    Article  Google Scholar 

  42. Chandra S, Lata H, Khan IA, Elsohly MA (2017) Cannabis sativa L.: botany and horticulture, in Cannabis sativa L. Bot Biotechnol, Springer. pp. 79–100

  43. Rai AK, Swapna H, Bhaskar N, Baskaran V (2012) Potential of seafood industry byproducts as sources of recoverable lipids: Fatty acid composition of meat and nonmeat component of selected Indian marine fishes. J Food Biochem 36(4):441–448

    Article  CAS  Google Scholar 

  44. Zeitoun MM. Mehana E (2014) Impact of water pollution with heavy metals on fish health: overview and updates. Global Vet 12(2):219–231

    Google Scholar 

  45. Mizushima Y, Takama K, Zama K (1977) Effect of copper, iron and hemin on lipid oxidation in fish flesh homogenate. Bull Fac Fish Hokkaido Univ 28(4):207–211

    CAS  Google Scholar 

  46. Senthamilselvan D, Chezhian A, Suresh E (2016) Synergistic effect of nickel and mercury on fatty acid composition in the muscle of fish Lates calcarifer. J Fish Aquat Sci 11(1):77–84

    Article  CAS  Google Scholar 

  47. Muinde V, Nguu E, Ogoyi D, Shiundu PM (2013) Effects of heavy metal pollution on omega-3 polyunsaturated fatty acids levels in tilapia fish from Winam gulf of lake Victoria. Open Environ Eng J 6(1)

  48. Khoshnoud MJ, Mobini K, Javidnia K, Hosseinkhezri P, Aeen Jamshid K (2011) Heavy metals (Zn, Cu, Pb, Cd and Hg) contents and fatty acids ratios in two fish species (Scomberomorus commerson and Otolithes ruber) of the Persian Gulf. Iran J Pharma Sci 7(3):191–196

    CAS  Google Scholar 

  49. Peres I, Pihan J (1991) Copper LC50 to Cyprinus carpio. influence of hardness, seasonal variation, proposition of maximum acceptable toxicant concentration. Environ Technol 12(2):161–167

    Article  CAS  Google Scholar 

  50. Vittozzi L, De Angelis G (1991) A critical review of comparative acute toxicity data on freshwater fish. Aquatic Toxicol 19(3):167–204

    Article  CAS  Google Scholar 

  51. Qiu H, Jin M, Li Y, Lu Y, Hou Y, Zhou Q (2017) Dietary lipid sources influence fatty acid composition in tissue of large yellow croaker (Larmichthys crocea) by regulating triacylglycerol synthesis and catabolism at the transcriptional level. PLoS ONE 12(1):e0169985

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Souza J, Costa F, Queiroga R, Silva J, Schuler A, Goulart C (2008) Fatty acid profile of eggs of semi-heavy layers fed feeds containing linseed oil. Revista Brasileira de Ciência Avícola 10(1):37–44

    Article  Google Scholar 

  53. Baucells M, Crespo N, Barroeta A, Lopez-Ferrer S, Grashorn M (2000) Incorporation of different polyunsaturated fatty acids into eggs. Poultry Sci 79(1):51–59

    Article  CAS  Google Scholar 

  54. Shila S, Kokilavani V, Subathra M, Panneerselvan C (2005) Brain regional responses in antioxidant system to α-lipoic acid in arsenic intoxicated rat. Toxicol 210(1):25–36

    Article  CAS  Google Scholar 

  55. Winzer K, Becker W, Van Noorden CJ, Köhler A (2000) Short-time induction of oxidative stress in hepatocytes of the European flounder (Platichthys flesus). Mar Environ Res 50(1–5):495–501

    Article  CAS  PubMed  Google Scholar 

  56. Webster CD, Thompson KR, Morgan AM, Grisby EJ, Gannam AL (2000) Use of hempseed meal, poultry by-product meal, and canola meal in practical diets without fish meal for sunshine bass (Morone chrysops × M. saxatilis). Aquaculture 188(3–4):299–309

    Article  Google Scholar 

  57. Gakhar N, Goldberg E, Jing M, Gibson R, House J (2012) Effect of feeding hemp seed and hemp seed oil on laying hen performance and egg yolk fatty acid content: Evidence of their safety and efficacy for laying hen diets. Poultry Sci 91(3):701–711

    Article  CAS  Google Scholar 

  58. Neijat M, Suh M, Neufeld J, House J (2016) Hempseed products fed to hens effectively increased n-3 polyunsaturated fatty acids in total lipids, triacylglycerol and phospholipid of egg yolk. Lipids 51(5):601–614

    Article  CAS  PubMed  Google Scholar 

  59. Schwab R, Ossowski S, Riester M, Warthmann N, Weigel D (2006) Highly specific gene silencing by artificial microRNAs in Arabidopsis. Plant Cell 18(5):1121–1133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Das UN (2006) Essential fatty acids: biochemistry, physiology and pathology. Biotechnol J 1(4):420–439

    Article  CAS  PubMed  Google Scholar 

  61. Wallis JG, Watts JL (2002) Polyunsaturated fatty acid synthesis: what will they think of next? Trends Biochem Sci 27(9):467–473

    Article  CAS  PubMed  Google Scholar 

  62. Kiralan M, Gül V, Kara SM (2010) Fatty acid composition of hempseed oils from different locations in Turkey. Span J Agri Res 8(2):385–390

    Article  Google Scholar 

  63. Salim de Castro G, Deminice R, Cordeiro Simões-Ambrosio LM, Calder P, Jordão A, Vannucchi H (2015) Dietary docosahexaenoic acid and eicosapentaenoic acid influence liver triacylglycerol and insulin resistance in rats fed a high-fructose diet. Marine Drugs 13(4):1864–1881

    Article  CAS  PubMed Central  Google Scholar 

  64. Simopoulos AP (1989) Summary of the NATO advanced research workshop on dietary ω3 and ω6 fatty acids: biological effects and nutritional essentiality. J Nutr 119(4):521–528

    Article  CAS  PubMed  Google Scholar 

  65. Piggot G, Tucker B (1990) Components of seafood. Seafood Effects of Technology on Nutrition, 32–65

  66. Meng X-L, Li S, Qin C-B, Zhu Z-X, Hu W-P, Yan L-P, Lu RH, Li W-J, Nie G-X (2018) Intestinal microbiota and lipid metabolism responses in the common carp (Cyprinus carpio L.) following copper exposure. Ecotoxicol Environ Saf 160:257–264

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank Mr. Muhammad Akram, Senior scientific officer, PCSIR for facilitation and guidance during sample analysis.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Amina Zuberi or Sana Ullah.

Ethics declarations

Conflict of interest

Authors have no conflict of interest to declare.

Ethical approval

The research was conducted by following compliance with ethical standards provided by society for the prevention of cruelty to animals (SPCA) of Pakistan. The current study was approved by the ethical board of Quaid-i-Azam University, Islamabad Pakistan. The ethical approval was obtained from the “Bioethical Committee of the Faculty of Biological Sciences on the use of animals for Scientific Research”, and the ethical approval number granted for this study was BEC-FBS-QAU2017-67.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Afridi, A.J., Zuberi, A., Yousafzai, A.M. et al. Hemp (Marijuana) reverted Copper-induced toxic effects on the essential fatty acid profile of Labeo rohita and Cirrhinus mrigala. Mol Biol Rep 46, 391–401 (2019). https://doi.org/10.1007/s11033-018-4483-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-018-4483-2

Keywords

Navigation