Skip to main content

Advertisement

Log in

Comparison of clinical parameters with whole exome sequencing analysis results of autosomal recessive patients; a center experience

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Whole-exome sequencing (WES) is an ideal method for the diagnosis of autosomal recessive diseases. The aim of this study was to evaluate the diagnostic power of WES in patients with autosomal recessive inheritance and to determine the relationship between genotype and phenotype. Retrospective screenings of 24 patients analysed with WES were performed and clinical and genetic data were evaluated. Any pathogenic mutation that could explain the suspected disease in 4 patients was not identified. A homozygous pathogenic mutation was detected in 18 patients. 2 patients had heterozygous mutations. According to this study results, WES is a successful technique to be used at the stage of diagnosis in patients who are accompanied by various degrees of intellectual disability matching the inheritance of the autosomal recessive.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. ACMG Policy Statement (2012) Points to consider in the clinical application of genomic sequencing. Genet Med 14(8):759–761

    Article  Google Scholar 

  2. Alazami AM et al (2012) Loss of function mutation in LARP7, chaperone of 7SK ncRNA, causes a syndrome of facial dysmorphism, intellectual disability, and primordial dwarfism. Hum Mutat 33(10):1429–1434

    Article  CAS  PubMed  Google Scholar 

  3. Angius A et al (2018) Erratum: Bi-allelic mutations in KLHL7 cause a crisponi/CISS1-like phenotype associated with early-onset retinitis pigmentosa. [Am J Hum Genet (2016) 99(1):(236–245) (S0002929716301616) (https://doi.org/10.1016/j.ajhg.2016.05.026)]. Am J Hum Genet 102(4):713

  4. Azmanov DN et al (2013) Challenges of diagnostic exome sequencing in an inbred founder population. Mol Genet Genom Med 1(2):71–76

    Article  CAS  Google Scholar 

  5. Finster M, Wood M (2005) The Apgar score has survived the test of time. Anesthesiology 102(4):855–857

    Article  PubMed  Google Scholar 

  6. Gilissen C, Hoischen A, Brunner HG, Veltman JA (2012) Disease gene identification strategies for exome sequencing. Eur J Hum Genet 20(5):490–497. https://doi.org/10.1038/ejhg.2011.258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Tassé MJ, Grover MD (2013) American association on intellectual and developmental disabilities. In: Volkmar FR (ed) Encyclopedia of autism spectrum disorders. Springer, New York, pp 122–125

    Chapter  Google Scholar 

  8. Harripaul R et al (2017) Mapping autosomal recessive intellectual disability: combined microarray and exome sequencing identifies 26 novel candidate genes in 192 consanguineous families. Mol Psychiatry 23(4):973

    Article  CAS  PubMed  Google Scholar 

  9. Harripaul R, Noor A, Ayub M, Vincent JB (2017) The use of next-generation sequencing for research and diagnostics for intellectual disability. Cold Spring Harb Perspect Med 7(3):a026864

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Khan E, Khan J, Rafi M, Khan F (2017) Consanguinity and autosomal recessive mental retardation in South Waziristan Agency. J Health Sci 7(3):44–49

    Google Scholar 

  11. MacLennan AH, Thompson SC, Gecz J (2015) Cerebral palsy: causes, pathways, and the role of genetic variants. Am J Obstet Gynecol 213(6):779–788

    Article  PubMed  Google Scholar 

  12. Mccandless SE, Brunger JW, Cassidy SB (2004) The burden of genetic disease on inpatient care in a children’s hospital. Am J Hum Genet 74:121–127

    Article  CAS  PubMed  Google Scholar 

  13. Nelson KB, Dambrosia JM, Ting TY, Grether JK (1996) Uncertain value of electronic fetal monitoring in predicting cerebral palsy. N Engl J Med 334(10):613–619

    Article  CAS  PubMed  Google Scholar 

  14. Oechsli FW et al (1989) Prenatal and perinatal factors in the etiology of cerebral palsy. J Pediatr 116(4):615–619

    Google Scholar 

  15. Pharoah POD (2007) Prevalence and pathogenesis of congenital anomalies in cerebral palsy. Arch Dis Child Fetal Neonatal Ed 92(6):F489–F493

    Article  PubMed  PubMed Central  Google Scholar 

  16. Picciolini O et al (2006) Usefulness of an early neurofunctional assessment in predicting neurodevelopmental outcome in very low birthweight infants. Arch Dis Child Fetal Neonatal Ed 91(2):111–118

    Article  Google Scholar 

  17. Reddihough D, Collins K (2003) Epidemiology and causes of cerebral palsy. Aust J Physiother 49:7–12

    Article  PubMed  Google Scholar 

  18. Rymen D et al (2012) COG5-CDG: expanding the clinical spectrum. Orphanet J Rare Dis 7(1):1–10

    Article  Google Scholar 

  19. Rymen D et al (2015) Key features and clinical variability of COG6-CDG. Mol Genet Metab 116(3):163–170. https://doi.org/10.1016/j.ymgme.2015.07.003

    Article  CAS  PubMed  Google Scholar 

  20. Samaranch L et al (2008) SPG11 compound mutations in spastic paraparesis with thin corpus callosum. Neurology 71(5):332–336

    Article  CAS  PubMed  Google Scholar 

  21. Shashi V et al (2014) The utility of the traditional medical genetics diagnostic evaluation in the context of next-generation sequencing for undiagnosed genetic disorders. Genet Med 16(2):176–182

    Article  CAS  PubMed  Google Scholar 

  22. Thorngren-Jerneck K, Herbst A (2001) Low 5-minute Apgar score: a population-based register study of 1 million term births. Obstet Gynecol 98(1):65–70

    CAS  PubMed  Google Scholar 

  23. TÜİK. 207AD (2017) Türkiye İstatistik Kurumu, İstatistiklerle Yaşlılar. TÜİK. http://www.tuik.gov.tr/PreHaberBultenleri.do?id=27595

  24. Verma A, Srivastava P, Kumar P (2016) Stress among parents having children with mental retardation: a gender perspective. J Disabil Manag Rehabil 2(1979):68–72

    Google Scholar 

  25. Vissers LELM, Gilissen C, Veltman JA (2015) Genetic studies in intellectual disability and related disorders. Nat Rev Genet 17(1):9–18. https://doi.org/10.1038/nrg3999

    Article  CAS  PubMed  Google Scholar 

  26. Witters I, Moerman P, Fryns J-P (2002) Fetal akinesia deformation sequence: a study of 30 consecutive in utero diagnoses. Am J Med Genet 113(1):23–28

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Elmas.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elmas, M., Yıldız, H., Erdoğan, M. et al. Comparison of clinical parameters with whole exome sequencing analysis results of autosomal recessive patients; a center experience. Mol Biol Rep 46, 287–299 (2019). https://doi.org/10.1007/s11033-018-4470-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-018-4470-7

Keywords

Navigation