Skip to main content

Advertisement

Log in

Development of drug-loaded protein nanoparticles displaying enzymatically-conjugated DNA aptamers for cancer cell targeting

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Modification of protein-based drug carriers with tumor-targeting properties is an important area of research in the field of anticancer drug delivery. To this end, we developed nanoparticles comprised of elastin-like polypeptides (ELPs) with fused poly-aspartic acid chains (ELP-D) displaying DNA aptamers. DNA aptamers were enzymatically conjugated to the surface of the nanoparticles via genetic incorporation of Gene A* protein into the sequence of the ELP-D fusion protein. Gene A* protein, derived from bacteriophage ϕX174, can form covalent complexes with single-stranded DNA via the latter’s recognition sequence. Gene A* protein-displaying nanoparticles exhibited the ability to deliver the anticancer drug paclitaxel (PTX), whilst retaining activity of the conjugated Gene A* protein. PTX-loaded protein nanoparticles displaying DNA aptamers known to bind to the MUC1 tumor marker resulted in increased cytotoxicity with MCF-7 breast cancer cells compared to PTX-loaded protein nanoparticles without the DNA aptamer modification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Nichols JW, Bae YH (2014) EPR: evidence and fallacy. J Control Release 190:451–464

    Article  CAS  PubMed  Google Scholar 

  2. Wang M, Thanou M (2010) Targeting nanoparticles to cancer. Pharmacol Res 62:90–99

    Article  CAS  PubMed  Google Scholar 

  3. Zhong Y, Meng F, Deng C, Zhong Z (2014) Ligand-directed active tumor-targeting polymeric nanoparticles for cancer chemotherapy. Biomacromol 15:1955–1969

    Article  CAS  Google Scholar 

  4. Sun H, Zhu X, Lu PY, Rosato RR, Tan W, Zu Y (2014) Oligonucleotide aptamers: new tools for targeted cancer therapy. Mol Ther Nucleic Acids 3:e182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Sun H, Zu Y (2015) Aptamers and their applications in nanomedicine. Small 11:2352–2364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Yu C, Hu Y, Duan J, Yuan W, Wang C, Xu H, Yang XD (2011) Novel aptamer-nanoparticle bioconjugates enhances delivery of anticancer drug to MUC1-positive cancer cells in vitro. PLoS ONE 6:e24077

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Huang F, You M, Chen T, Zhu G, Liang H, Tan W (2014) Self-assembled hybrid nanoparticles for targeted co-delivery of two drugs into cancer cells. Chem Commun (Camb) 50:3103–3105

    Article  CAS  Google Scholar 

  8. Wu J, Song C, Jiang C, Shen X, Qiao Q, Hu Y (2013) Nucleolin targeting AS1411 modified protein nanoparticle for antitumor drugs delivery. Mol Pharm 10:3555–3563

    Article  CAS  PubMed  Google Scholar 

  9. Sayari E, Dinarvand M, Amini M, Azhdarzadeh M, Mollarazi E, Ghasemi Z, Atyabi F (2014) MUC1 aptamer conjugated to chitosan nanoparticles, an efficient targeted carrier designed for anticancer SN38 delivery. Int J Pharm 473:304–315

    Article  CAS  PubMed  Google Scholar 

  10. Pokorski JK, Hovlid ML, Finn MG (2011) Cell targeting with hybrid Qbeta virus-like particles displaying epidermal growth factor. Chembiochem 12:2441–2447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Simnick AJ, Amiram M, Liu W, Hanna G, Dewhirst MW, Kontos CD, Chilkoti A (2011) In vivo tumor targeting by a NGR-decorated micelle of a recombinant diblock copolypeptide. J Control Release 155:144–151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Sun G, Hsueh PY, Janib SM, Hamm-Alvarez S, MacKay JA (2011) Design and cellular internalization of genetically engineered polypeptide nanoparticles displaying adenovirus knob domain. J Control Release 155:218–226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Hassouneh W, Fischer K, MacEwan SR, Branscheid R, Fu CL, Liu R, Schmidt M, Chilkoti A (2012) Unexpected multivalent display of proteins by temperature triggered self-assembly of elastin-like polypeptide block copolymers. Biomacromol 13:1598–1605

    Article  CAS  Google Scholar 

  14. Li X, Qiu L, Zhu P, Tao X, Imanaka T, Zhao J, Huang Y, Tu Y, Cao X (2012) Epidermal growth factor-ferritin H-chain protein nanoparticles for tumor active targeting. Small 8:2505–2514

    Article  CAS  PubMed  Google Scholar 

  15. Matsumoto R, Hara R, Andou T, Mie M, Kobatake E (2014) Targeting of EGF-displayed protein nanoparticles with anticancer drugs. J Biomed Mater Res B Appl Biomater 102:1792–1798

    Article  CAS  PubMed  Google Scholar 

  16. Assal Y, Mizuguchi Y, Mie M, Kobatake E (2015) Growth factor tethering to protein nanoparticles via coiled-coil formation for targeted drug delivery. Bioconjug Chem 26:1672–1677

    Article  CAS  PubMed  Google Scholar 

  17. Sanhueza S, Eisenberg S (1985) Bacteriophage phi X174 A protein cleaves single-stranded DNA and binds to it covalently through a tyrosyl-dAMP phosphodiester bond. J Virol 53:695–697

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Hanai R, Wang JC (1993) The mechanism of sequence-specific DNA cleavage and strand transfer by phi X174 gene A* protein. J Biol Chem 268:23830–23836

    CAS  PubMed  Google Scholar 

  19. Mashimo Y, Maeda H, Mie M, Kobatake E (2012) Construction of semisynthetic DNA-protein conjugates with Phi X174 Gene-A* protein. Bioconjug Chem 23:1349–1355

    Article  CAS  PubMed  Google Scholar 

  20. Akter F, Mie M, Grimm S, Nygren PA, Kobatake E (2012) Detection of antigens using a protein-DNA chimera developed by enzymatic covalent bonding with phiX gene A*. Anal Chem 84:5040–5046

    Article  CAS  PubMed  Google Scholar 

  21. Ferreira CS, Matthews CS, Missailidis S (2006) DNA aptamers that bind to MUC1 tumour marker: design and characterization of MUC1-binding single-stranded DNA aptamers. Tumour Biol 27:289–301

    Article  CAS  PubMed  Google Scholar 

  22. McPherson DT, Xu J, Urry DW (1996) Product purification by reversible phase transition following Escherichia coli expression of genes encoding up to 251 repeats of the elastomeric pentapeptide GVGVP. Protein Expr Purif 7:51–57

    Article  CAS  PubMed  Google Scholar 

  23. Ren L, Marquardt MA, Lech JJ (1997) Estrogenic effects of nonylphenol on pS2, ER and MUC1 gene expression in human breast cancer cells-MCF-7. Chem Biol Interact 104:55–64

    Article  CAS  PubMed  Google Scholar 

  24. Razawi H, Kinlough CL, Staubach S, Poland PA, Rbaibi Y, Weisz OA, Hughey RP, Hanisch FG (2013) Evidence for core 2 to core 1 O-glycan remodeling during the recycling of MUC1. Glycobiology 23:935–945

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hisatsune A, Kawasaki M, Nakayama H, Mikami Y, Miyata T, Isohama Y, Katsuki H, Kim KC (2009) Internalization of MUC1 by anti-MUC1 antibody from cell membrane through the macropinocytotic pathway. Biochem Biophys Res Commun 388:677–682

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

A part of this work was supported by Grants-in-Aid for Scientific Research from Japan Society for the Promotion of Science (JSPS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eiry Kobatake.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mie, M., Matsumoto, R., Mashimo, Y. et al. Development of drug-loaded protein nanoparticles displaying enzymatically-conjugated DNA aptamers for cancer cell targeting. Mol Biol Rep 46, 261–269 (2019). https://doi.org/10.1007/s11033-018-4467-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-018-4467-2

Keywords

Navigation