Skip to main content
Log in

Assessment of genetic variation among wild Alpinia nigra (Zingiberaceae) population: an approach based on molecular phylogeny

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Genetic structure was evaluated among wild Alpinia nigra (Gaertn.) B.L. Burtt, populations. The information of genetic relatedness was developed using random amplified polymorphic DNA (RAPD), inter-simple sequence repeat (ISSR) and barcoding loci (plastid and mitochondrial). The order (high to low) of Shannon’s information index (I) and Nei’s gene diversity (h) from the populations was: “IIT Guwahati” > “Amingaon” > “Saraighat”. Genetic diversity decreased and genetic differentiation increased among the three populations. We observed no isolation by distance thus lower amount of gene flow was observed. Narrow range of genetic distance among the three populations and appearance of two distinct clusters strengthened the geographical isolation in dendrogram and principal component analysis. No mutation among the three populations was observed for seven plastid loci and two mitochondrial tested suggesting the taxonomic homogeneity. The phylogeny based on nine barcoding loci supported our observation that individuals of IIT Guwahati were partially isolated from the outside populations. Our study will provide a backbone for developing strategies to resist habitat fragmentation of Zingiberaceous plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

accD :

Acetyl-CoA carboxylase-D

atpFatpH :

ATP synthase subunit b–ATP synthase subunit c

cob :

Apocytochrome b

cox1 :

Cytochrome oxidase subunit 1

ISSR:

Inter simple sequence repeats

PCA:

Principle component analysis

PIC:

Polymorphic information content

PCR:

Polymerase chain reaction

psbKpsbI :

Photosystem II reaction center protein K–Photosystem II reaction center protein I

RAPD:

Random amplified polymorphic DNA

rbcL :

Ribulose-1,5-bisphosphate carboxylase/oxygenase large subunit

rpoC1 :

RNA polymerase C

rpoB :

RNA polymerase B

UPGMA:

Unweighted pair group method with arithmetic mean.

References

  1. Kolb A (2008) Habitat fragmentation reduces plant fitness by disturbing pollination and modifying response to herbivory. Biol Conserv 141:2540–2549. https://doi.org/10.1016/j.biocon.2008.07.015

    Article  Google Scholar 

  2. Matesanz S, Rubio Teso ML, García-Fernández A, Escudero A (2017) Habitat fragmentation differentially affects genetic variation, phenotypic plasticity and survival in populations of a Gypsum endemic. Front Plant Sci 8:1–15. https://doi.org/10.3389/fpls.2017.00843

    Article  CAS  Google Scholar 

  3. Matesanz S, Valladares F (2014) Ecological and evolutionary responses of Mediterranean plants to global change. Environ Exp Bot 103:53–67. https://doi.org/10.1016/j.envexpbot.2013.09.004

    Article  Google Scholar 

  4. Tushar, Basak S, Sarma GC, Rangan L (2010) Ethnomedical uses of Zingiberaceous plants of Northeast India. J Ethnopharmacol 132:286–296. https://doi.org/10.1016/j.jep.2010.08.032

    Article  PubMed  Google Scholar 

  5. Borah RL, Sharma GC (2012) Systematic survey of Zingiberaceae of Dibrugarh district, Assam, India. Indian J Fundam Appl Life Sci 2:365–373

    Google Scholar 

  6. Basak S, Krishnamurthy H, Rangan L (2018) Genome size variation among 3 selected genera of Zingiberoideae. Meta Gene 15:42–49. https://doi.org/10.1016/j.mgene.2017.11.003

    Article  Google Scholar 

  7. Kress WJ, Liu AZ, Newman M, Qing-Jun LI (2005) The molecular phylogeny of Alpinia (Zingiberaceae): a complex and polyphyletic genus of gingers. Am J Bot 92:167–178. https://doi.org/10.3732/ajb.92.1.167

    Article  CAS  PubMed  Google Scholar 

  8. Zhang L, Li QJ, Deng XB et al (2003) Reproductive biology of Alpinia blepharocalyx (Zingiberaceae): another example of flexistyly. Plant Syst Evol 241:67–76. https://doi.org/10.1007/s00606-003-0021-2

    Article  Google Scholar 

  9. Roy J (1998) Karyophotometrical analysis and exploration of major oil constituents of Zingiberaceae. Mahatma Gandhi University, Kottayam

    Google Scholar 

  10. Li QJ, Xu ZF, Kress WJ et al (2001) Flexible style that encourages outcrossing. Nature 410:432. https://doi.org/10.1038/35068635

    Article  CAS  PubMed  Google Scholar 

  11. Kesari V, Madurai Sathyanarayana V, Parida A, Rangan L (2010) Molecular marker-based characterization in candidate plus trees of Pongamia pinnata, a potential biodiesel legume. AoB Plants 2010:plq017. https://doi.org/10.1093/aobpla/plq017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kesari V, Rangan L (2011) Genetic diversity analysis by RAPD markers in candidate plus trees of Pongamia pinnata, a promising source of bioenergy. Biomass Bioenerg 35:3123–3128. https://doi.org/10.1016/j.biombioe.2011.04.015

    Article  CAS  Google Scholar 

  13. Das A, Kesari V, Satyanarayana VM et al (2011) Genetic relationship of Curcuma species from Northeast India using PCR-based markers. Mol Biotechnol 49:65–76. https://doi.org/10.1007/s12033-011-9379-5

    Article  CAS  PubMed  Google Scholar 

  14. Wang Y, Sun E, Wang W et al (2016) Effects of habitat fragmentation on genetic diversity and population differentiation of Liposcelis bostrychophila badonnel (Psocoptera: Liposcelididae) as revealed by ISSR markers. J Stored Prod Res 68:80–84. https://doi.org/10.1016/j.jspr.2016.04.008

    Article  CAS  Google Scholar 

  15. Valentini A, Pompanon F, Taberlet P (2008) DNA barcoding for ecologists. Trends Ecol Evol 24:110–117. https://doi.org/10.1016/j.tree.2008.09.011

    Article  PubMed  Google Scholar 

  16. Vamosi JC, Gong YB, Adamowicz SJ, Packer L (2017) Forecasting pollination declines through DNA barcoding: the potential contributions of macroecological and macroevolutionary scales of inquiry. New Phytol 214:11–18. https://doi.org/10.1111/nph.14356

    Article  PubMed  Google Scholar 

  17. Hollingsworth PM, Graham SW, Little DP (2011) Choosing and using a plant DNA barcode. PLoS ONE. https://doi.org/10.1371/journal.pone.0019254

    Article  PubMed  PubMed Central  Google Scholar 

  18. Drummond A, Ashton B, Buxton S et al (2010) Geneious 5.5

  19. Kearse M, Moir R, Wilson A et al (2012) Geneious basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28:1647–1649. https://doi.org/10.1093/bioinformatics/bts199

    Article  PubMed  PubMed Central  Google Scholar 

  20. Rohlf FJ (2000) NTSYS-pc—numerical taxonomy and multivariate analysis system. Exeter Publishing, Ltd., New York

    Google Scholar 

  21. Powell W, Morgante M, Andre C et al (1996) The unity of RFLP, RAPD, AFLP and SSR (microsatellite) markers for germplasm analysis. Mol Breed 2:225–238

    Article  CAS  Google Scholar 

  22. Yeh FC, Yang RC, Boyle TBJ et al (1997) POPGENE, the user friendly shareware for population genetic analysis. Biotechnology 7(2):104–110

    Google Scholar 

  23. Mantel N (1967) The detection of disease clustering and generalized regression approach. Cancer Res 27:209–220. https://doi.org/10.1038/214637b0

    Article  CAS  PubMed  Google Scholar 

  24. R Development Core Team (2013) R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  25. Dice LR (1945) Measures of the amount of ecological association between species. Ecology 26:297–302

    Article  Google Scholar 

  26. Lescot M, Piffanelli P, Ciampi AY et al (2008) Insights into the Musa genome: syntenic relationships to rice and between Musa species. BMC Genom. https://doi.org/10.1186/1471-2164-9-58

    Article  Google Scholar 

  27. Fischer M, Kleunen M, Van (2002) On the evolution of clonal plant life histories. Evol Ecol 15:565–582

    Article  Google Scholar 

  28. Zhao R, Zhang H, An L (2018) Anthropogenic disturbances affect population size and biomass allocation of two alpine species from the headwater area of the Urumqi river, China. Pakistan J Bot 50:199–209

    Google Scholar 

  29. Leimu R, Mutikainen P, Koricheva J, Fischer M (2006) How general are positive relationships between plant population size, fitness and genetic variation? J Ecol 94:942–952. https://doi.org/10.1111/j.1365-2745.2006.01150.x

    Article  Google Scholar 

  30. Basak S, Kesari V, Ramesh AM et al (2017) Assessment of genetic variation among nineteen turmeric cultivars of Northeast India: nuclear DNA content and molecular marker approach. Acta Physiol Plant 39:45. https://doi.org/10.1007/s11738-016-2341-1

    Article  CAS  Google Scholar 

  31. Bhattacharyya P, Kumaria S, Kumar S, Tandon P (2013) Start Codon Targeted (SCoT) marker reveals genetic diversity of Dendrobium nobile Lindl., an endangered medicinal orchid species. Gene 529:21–26. https://doi.org/10.1016/j.gene.2013.07.096

    Article  CAS  PubMed  Google Scholar 

  32. Hutchison DW, Templeton AR (1999) Correlation of pairwise genetic and geographic distance measures: Inferring the relative influences of gene flow and drift on the distribution of genetic variability. Evolution 53:1898–1914

    Article  PubMed  Google Scholar 

  33. Wang H, Liu X, Wen M et al (2012) Analysis of the genetic diversity of natural populations of Alpinia oxyphylla miquel using inter-simple sequence repeat markers. Crop Sci 52:1767–1775. https://doi.org/10.2135/cropsci2011.06.0323

    Article  CAS  Google Scholar 

  34. Warburton CL, James EA, Fripp YJ et al (2000) Clonality and sexual reproductive failure in remnant populations of Santalum lanceolatum (Santalaceae). Biol Conserv 96:45–54. https://doi.org/10.1016/S0006-3207(00)00049-5

    Article  Google Scholar 

  35. Young A, Boyle T, Brown T (1996) The population genetic consequences of habitat fragmentation for plants. Trends Ecol Evol 11:413–418. https://doi.org/10.1016/0169-5347(96)10045-8

    Article  CAS  PubMed  Google Scholar 

  36. Rhodes OE Jr, Chesser RK (1994) Genetic concepts for habitat conservation: the transfer and maintence of genetic variaton. Landsc Urban Plan 28:55–62

    Article  Google Scholar 

  37. Vukov D, Ilić M, Ćuk M et al (2018) Combined effects of physical environmental conditions and anthropogenic alterations are associated with macrophyte habitat fragmentation in rivers—study of the Danube in Serbia. Sci Total Environ 634:780–790. https://doi.org/10.1016/j.scitotenv.2018.03.367

    Article  CAS  PubMed  Google Scholar 

  38. Chen K-X, Wang R, Chen X-Y (2008) Genetic structure of Alpinia japonica populations in naturally fragmented habitats. Acta Ecol Sin 28:2480–2485

    CAS  Google Scholar 

  39. Guo W, Hussain N, Wu RUI, Liu BAO (2018) High hypomethylation and epigenetic variation in fragmented populations of wild barley (Hordeum brevisubulatum). Pak J Bot 50:1379–1386

    CAS  Google Scholar 

Download references

Acknowledgements

SB, IC and RGS thank MHRD for fellowship. LR thanks the Department of Biotechnology (DBT) Government of India for funding the project by way of DBT Twinning Programme for NE (BT/33/NE/TBP/2010) and Biosciences and Bioengineering Department, IIT Guwahati for providing all necessary infrastructural support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Latha Rangan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Fig. 1

The multiple sequence alignment of three populations of Guwahati city, Northeast India. arpoC1, bcob. The genes rpoC1 and cob were characterized by no mutation. It showed that all the three populations were A. nigra (TIF 1602 KB)

Supplementary Fig. 2

The multiple sequence alignment of the three populations of Guwahati city, Northeast India showed no mutation in the sequence. arpoB1, brbcL. This study confirmed that all the accessions are of A. nigra (TIF 1364 KB)

Supplementary Fig. 3

The multiple sequence alignment of the three populations of Guwahati Assam showed no mutation in the sequence. aaccD, bmatK. This study confirmed that there was no taxonomic ambiguity in our experimental design (TIF 1602 KB)

Supplementary Fig. 4

The multiple sequence alignment of inter-genic regions for three populations of Guwahati Assam showed no mutation in the sequence. aatpF-atpH, bpsbKpsbI. This study confirmed that all the accessions are of A. nigra (TIF 1797 KB)

Supplementary Fig. 5

The multiple sequence alignment of mitochondrial region (cox1) of the three populations of Guwahati Assam showed no mutation in the sequence. This study confirmed that all the accessions are of A. nigra (TIF 1067 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Basak, S., Chakrabartty, I., Hedaoo, V. et al. Assessment of genetic variation among wild Alpinia nigra (Zingiberaceae) population: an approach based on molecular phylogeny. Mol Biol Rep 46, 177–189 (2019). https://doi.org/10.1007/s11033-018-4458-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-018-4458-3

Keywords

Navigation