Advertisement

Molecular Biology Reports

, Volume 46, Issue 1, pp 161–175 | Cite as

Phylogenetic analysis of upland cotton MATE gene family reveals a conserved subfamily involved in transport of proanthocyanidins

  • Lei Xu
  • Zhi-Lin Shen
  • Wen Chen
  • Guo-Yang Si
  • Yan Meng
  • Ning Guo
  • Xu Sun
  • Yong-Ping Cai
  • Yi Lin
  • Jun-Shan GaoEmail author
Original Article
  • 242 Downloads

Abstract

The multidrug and toxic compound extrusion (MATE) protein belongs to a secondary transporter family, which plays a role in transporting different kinds of substrates like phytohormones and secondary metabolites. In plant, MATE transporters related to the endogenous and exogenous mechanisms of detoxification for secondary metabolites such as alkaloids, flavonoids, anthocyanins and other secondary metabolites have been studied. However, a genome-wide analysis of the MATE family is rarely reported in upland cotton (Gossypium hirsutum L.). In the study, a total of 72 GhMATEs were identified from the genome of upland cotton, which were classified into four subfamilies with possible diverse functions such as transport of proanthocyanidins (PAs), accumulation of alkaloids, extrusion of xenobiotic compounds, regulation of disease resistance and response to abiotic stresses. Meanwhile, the gene structure, evolutionary relationship, physical location, conservative motifs, subcellular localization and gene expression pattern of GhMATEs have been further analysed. Three of these MATE genes (GhMATE12, GhMATE16 and GhMATE38) were identified as candidate genes due to their functions in transport of PA similar to GhTT12. These results provide a new perspective on upland cotton MATE gene family for their potential roles in transport of PA and a theoretical basis for further analyzing the function of MATE genes and improving the fiber quality of brown cotton.

Keywords

Gossypium hirsutum MATE Gene structure Phylogenetic analysis Expression pattern Proanthocyanidin 

Notes

Acknowledgements

We thank Dr. Da-Hui Li for assisting the experimental technology and revising the original manuscript, and are thankful for Prof. Zhao-Rong Deng to offer the biochemical reagents. This work was sponsored by State Key Laboratory of Cotton Biology Open Fund (No. CB2018A01 to J.-S. G.) and the National Natural Science Foundation of China (Grant Nos. 31672497 to J.-S. G.; 31572468 to Y. M.). It was also supported by the National Key Research and Development Program of China (No. 2016YFD0300205-3 to Z.-R. D.).

Author Contributions

J-SG, YL and YM conceived the idea, LX, WC, G-YS and Z-LS analysed the data, J-SG, LX and Z-LS wrote the manuscript, NG, Y-PC and XS assisted in sequence analysis. All authors reviewed the manuscript.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflicts of interest.

Supplementary material

11033_2018_4457_MOESM1_ESM.tif (4.2 mb)
Supplement Fig. S1 Chromosomal location and gene duplication of 72 MATE genes on 20 chromosomes of upland cotton. The name of chromosome is indicated at the top of each bar. The scale on the left is in Mb. The MATE gene on the left side of each chromosome corresponds to the approximate location on each chromosome. The segmentally duplicated genes are connected by dashed lines. (TIF 4285 KB)
11033_2018_4457_MOESM2_ESM.doc (200 kb)
Supplementary material 2 (DOC 199 KB)
11033_2018_4457_MOESM3_ESM.doc (39 kb)
Supplementary material 3 (DOC 39 KB)

References

  1. 1.
    Saier MH Jr, Paulsen IT (2001) Phylogeny of multidrug transporters. Semin Cell Dev Biol 12:205–213CrossRefPubMedGoogle Scholar
  2. 2.
    Omote H, Hiasa M, Matsumoto T, Otsuka M, Moriyama Y (2006) The MATE proteins as fundamental transporters of metabolic and xenobiotic organic cations. Trends Pharmacol Sci 27:587–593CrossRefPubMedGoogle Scholar
  3. 3.
    Magalhaes JV (2010) How a microbial drug transporter became essential for crop cultivation on acid soils: aluminium tolerance conferred by the multidrug and toxic compound extrusion (MATE) family. Ann Bot 106:199–203CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    He X, Szewczyk P, Karyakin A, Evin M, Hong W-X, Zhang Q, Chang G (2010) Structure of a cation-bound multidrug and toxic compound extrusion transporter. Nature 467:991–994CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Wang L, Bei X, Gao J, Li Y, Yan Y, Hu Y (2016) The similar and different evolutionary trends of MATE family occurred between rice and Arabidopsis thaliana. BMC Plant Biol 16:207CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Zhu H, Wu J, Jiang Y, Jin J, Zhou W, Wang Y, Han G, Zhao Y, Cheng B (2016) Genomewide analysis of MATE-type gene family in maize reveals microsynteny and their expression patterns under aluminum treatment. J Genet 95:691–704CrossRefPubMedGoogle Scholar
  7. 7.
    Liu J, Li Y, Wang W, Gai J, Li Y (2016) Genome-wide analysis of MATE transporters and expression patterns of a subgroup of MATE genes in response to aluminum toxicity in soybean. BMC Genomics 17:223CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Chen L, Liu Y, Liu H, Kang L, Geng J, Gai Y, Ding Y, Sun H, Li Y (2015) Identification and expression analysis of MATE genes involved in flavonoid transport in blueberry plants. PLoS ONE 10:e0118578CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Yazaki K, Sugiyama A, Morita M, Shitan N (2008) Secondary transport as an efficient membrane transport mechanism for plant secondary metabolites. Phytochem Rev 7:513–524CrossRefGoogle Scholar
  10. 10.
    Santos ALD, Chaves-Silva S, Yang L, Maia LGS, Chalfun-Júnior A, Sinharoy S, Zhao J, Benedito VA (2017) Global analysis of the MATE gene family of metabolite transporters in tomato. BMC Plant Biol 17:185CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Lu P, Magwanga RO, Guo X, Kirungu JN, Lu H, Cai X, Zhou Z, Wei Y, Wang X, Zhang Z, Peng R, Wang K, Liu F (2018) Genome-wide analysis of multidrug and toxic compound extrusion (MATE) family in Gossypium raimondii and Gossypium arboreum and its expression analysis under salt, cadmium, and drought stress. G3 8:2483–2500CrossRefPubMedGoogle Scholar
  12. 12.
    Gao J-S, Wu N, Shen Z-L, Lv K, Qian S-H, Guo N, Sun X, Cai Y-P, Lin Y (2016) Molecular cloning, expression analysis and subcellular localization of a Transparent Testa 12 ortholog in brown cotton (Gossypium hirsutum L.). Gene 576:763–769CrossRefPubMedGoogle Scholar
  13. 13.
    Zhao X, Wang X (2005) Composition analysis of pigment in colored cotton fiber. Acta Agron Sin 31:456–462Google Scholar
  14. 14.
    Zhan S, Lin Y, Cai Y, Li Z (2007) Preliminary deductions of the chemical structure of the pigment brown in cotton fiber. Chin Bull Bot 24:99–104Google Scholar
  15. 15.
    Dixon RA, Liu C, Jun JH (2013) Metabolic engineering of anthocyanins and condensed tannins in plants. Curr Opin Biotechnol 24:329–335CrossRefPubMedGoogle Scholar
  16. 16.
    Dixon RA, Xie DY, Sharma SB (2005) Proanthocyanidins—a final frontier in flavonoid research? New Phytol 165:9–28CrossRefPubMedGoogle Scholar
  17. 17.
    Lepiniec L, Debeaujon I, Routaboul J-M, Baudry A, Pourcel L, Nesi N, Caboche M (2006) Genetics and biochemistry of seed flavonoids. Annu Rev Plant Biol 57:405–430CrossRefPubMedGoogle Scholar
  18. 18.
    Ariga T, Asao Y, Sugimoto H, Yokotsuka T (1981) Occurrence of astringent oligomeric proanthocyanidins in legume seeds. Agric Biol Chem 45:2705–2708Google Scholar
  19. 19.
    Gabetta B, Fuzzati N, Griffini A, Lolla E, Pace R, Ruffilli T, Peterlongo F (2000) Characterization of proanthocyanidins from grape seeds. Fitoterapia 71:162–175CrossRefPubMedGoogle Scholar
  20. 20.
    Gu L, Kelm MA, Hammerstone JF et al (2004) Concentrations of proanthocyanidins in common foods and estimations of normal consumption. J Nutr 134:613–617CrossRefPubMedGoogle Scholar
  21. 21.
    Santos-Buelga C, Scalbert A (2000) Proanthocyanidins and tannin-like compounds–nature, occurrence, dietary intake and effects on nutrition and health. J Sci Food Agric 80:1094–1117CrossRefGoogle Scholar
  22. 22.
    Serafini M, Bugianesi R, Maiani G, Valtuena S, De Santis S, Crozier A (2003) Plasma antioxidants from chocolate. Nature 424:1013CrossRefPubMedGoogle Scholar
  23. 23.
    Zhao J, Dixon RA (2009) MATE transporters facilitate vacuolar uptake of epicatechin 3′-O-glucoside for proanthocyanidin biosynthesis in Medicago truncatula and Arabidopsis. Plant Cell 21:2323–2340CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Zhao J, Huhman D, Shadle G, He X-Z, Sumner LW, Tang Y, Dixon RA (2011) MATE2 mediates vacuolar sequestration of flavonoid glycosides and glycoside malonates in Medicago truncatula. Plant Cell 23:1536–1555CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Paterson AH, Wendel JF, Gundlach H et al (2012) Repeated polyploidization of Gossypium genomes and the evolution of spinnable cotton fibres. Nature 492:423–427CrossRefPubMedGoogle Scholar
  26. 26.
    Wang K, Wang Z, Li F et al (2012) The draft genome of a diploid cotton Gossypium raimondii. Nat Genet 44:1098–1103CrossRefPubMedGoogle Scholar
  27. 27.
    Li F, Fan G, Wang K et al (2014) Genome sequence of the cultivated cotton Gossypium arboreum. Nat Genet 46:567–572CrossRefPubMedGoogle Scholar
  28. 28.
    Eddy SR (1996) Hidden Markov models. Curr Opin Struct Biol 6:361–365CrossRefPubMedGoogle Scholar
  29. 29.
    Finn RD, Mistry J, Schuster-Böckler B et al (2006) Pfam: clans, web tools and services. Nucleic Acids Res 34:247–251CrossRefGoogle Scholar
  30. 30.
    Letunic I, Doerks T, Bork P (2012) SMART 7: recent updates to the protein domain annotation resource. Nucleic Acids Res 40:302–305CrossRefGoogle Scholar
  31. 31.
    Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Gasteiger E, Gattiker A, Hoogland C, Ivanyi I, Appel RD, Bairoch A (2003) ExPASy: the proteomics server for in-depth protein knowledge and analysis. Nucleic Acids Res 31:3784–3788CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Zhang C, Zhang H, Zhao Y, Jiang H, Zhu S, Cheng B, Xiang Y (2013) Genome-wide analysis of the CCCH zinc finger gene family in Medicago truncatula. Plant Cell Rep 32:1543–1555CrossRefPubMedGoogle Scholar
  34. 34.
    Hu B, Jin J, Guo A-Y, Zhang H, Luo J, Gao G (2014) GSDS 2.0: an upgraded gene feature visualization server. Bioinformatics 31:1296–1297CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Bailey TL, Elkan C (1995) The value of prior knowledge in discovering motifs with MEME. Proc Int Conf Intell Syst Mol Biol 3:21–29PubMedGoogle Scholar
  36. 36.
    He H, Dong Q, Shao Y, Jiang H, Zhu S, Cheng B, Xiang Y (2012) Genome-wide survey and characterization of the WRKY gene family in Populus trichocarpa. Plant Cell Pep 31:1199–1217CrossRefGoogle Scholar
  37. 37.
    Wang Y, Tang H, Debarry JD et al (2012) MCScanX: a toolkit for detection and evolutionary analysis of gene synteny and collinearity. Nucleic Acids Res 40:e49CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Wang F, Dong Q, Jiang H, Zhu S, Chen B, Xiang Y (2012) Genome-wide analysis of the heat shock transcription factors in Populus trichocarpa and Medicago truncatula. Mol Biol Rep 39:1877–1886CrossRefPubMedGoogle Scholar
  39. 39.
    Li L, Stoeckert CJ, Roos DS (2003) OrthoMCL: identification of ortholog groups for eukaryotic genomes. Genome Res 13:2178–2189CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Krzywinski M, Schein J, Birol I et al (2009) Circos: an information aesthetic for comparative genomics. Genome Res 19:1639–1645CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−∆∆CT method. Methods 25:402–408CrossRefGoogle Scholar
  42. 42.
    Ikegami A, Akagi T, Potter D, Yamada M, Sato A, Yonemori K, Kitajima A, Inoue K (2009) Molecular identification of 1-Cys peroxiredoxin and anthocyanidin/flavonol 3-O-galactosyltransferase from proanthocyanidin-rich young fruits of persimmon (Diospyros kaki Thunb.). Planta 230:841–855CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Li Y, Tanner G, Larkin PJ (1996) The DMACA-HCl protocol and the threshold proanthocyanidin content for bloat safety in forage legumes. J Sci Food Agric 70:89–101CrossRefGoogle Scholar
  44. 44.
    Li L, He Z, Pandey GK, Tsuchiya T, Luan S (2002) Functional cloning and characterization of a plant efflux carrier for multidrug and heavy metal detoxification. J Biol Chem 277:5360–5368CrossRefPubMedGoogle Scholar
  45. 45.
    Tiwari M, Sharma D, Singh M, Tripathi RD, Trivedi PK (2014) Expression of OsMATE1 and OsMATE2 alters development, stress responses and pathogen susceptibility in Arabidopsis. Sci Rep 4:3964CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Otto SP (2007) The evolutionary consequences of polyploidy. Cell 131:452–462CrossRefPubMedGoogle Scholar
  47. 47.
    Soltis PS, Soltis DE (2009) The role of hybridization in plant speciation. Annu Rev Plant Biol 60:561–588CrossRefPubMedGoogle Scholar
  48. 48.
    Brenchley R et al (2012) Analysis of the bread wheat genome using whole-genome shotgun sequencing. Nature 491:705–710CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Moore RC, Purugganan MD (2003) The early stages of duplicate gene evolution. Proc Natl Acad Sci USA 100:15682–15687CrossRefPubMedGoogle Scholar
  50. 50.
    Cannon SB, Mitra A, Baumgarten A, Young ND, May G (2004) The roles of segmental and tandem gene duplication in the evolution of large gene families in Arabidopsis thaliana. BMC Plant Biol 4:10CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Thompson EP, Wilkins C, Demidchik V, Davies JM, Glover BJ (2009) An Arabidopsis flavonoid transporter is required for anther dehiscence and pollen development. J Exp Bot 61:439–451CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Gomez C, Terrier N, Torregrosa L et al (2009) Grapevine MATE-type proteins act as vacuolar H+-dependent acylated anthocyanin transporters. Plant Physiol 150:402–415CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Gomez C, Conejero G, Torregrosa L, Cheynier V, Terrier N, Ageorges A (2011) In vivo grapevine anthocyanin transport involves vesicle-mediated trafficking and the contribution of anthoMATE transporters and GST. Plant J 67:960–970CrossRefPubMedGoogle Scholar
  54. 54.
    Shoji T, Inai K, Yazaki Y et al (2009) Multidrug and toxic compound extrusion-type transporters implicated in vacuolar sequestration of nicotine in tobacco roots. Plant Physiol 149:708–718CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Pérez-Díaz R, Ryngajllo M, Pérez-Díaz J, Peña-Cortés H, Casaretto JA, González-Villanueva E, Ruiz-Lara S (2014) VvMATE1 and VvMATE2 encode putative proanthocyanidin transporters expressed during berry development in Vitis vinifera L. Plant Cell Rep 33:1147–1159CrossRefPubMedGoogle Scholar
  56. 56.
    Morita M, Shitan N, Sawada K et al (2009) Vacuolar transport of nicotine is mediated by a multidrug and toxic compound extrusion (MATE) transporter in Nicotiana tabacum. Proc Natl Acad Sci USA 106:2447–2452CrossRefPubMedGoogle Scholar
  57. 57.
    Mathews H, Clendennen SK, Caldwell CG et al (2003) Activation tagging in tomato identifies a transcriptional regulator of anthocyanin biosynthesis, modification, and transport. Plant Cell 15:1689–1703CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Sun X, Gilroy EM, Chini A et al (2011) ADS1 encodes a MATE-transporter that negatively regulates plant disease resistance. New Phytol 192:471–482CrossRefPubMedGoogle Scholar
  59. 59.
    Wang R, Liu X, Liang S et al (2015) A subgroup of MATE transporter genes regulates hypocotyl cell elongation in Arabidopsis. J Exp Bot 66:6327–6343CrossRefPubMedGoogle Scholar
  60. 60.
    Rogozin IB, Wolf YI, Sorokin AV, Mirkin BG, Koonin EV (2003) Remarkable interkingdom conservation of intron positions and massive, lineage-specific intron loss and gain in eukaryotic evolution. Curr Biol 13:1512–1517CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.School of Life SciencesAnhui Agricultural UniversityHefeiChina

Personalised recommendations