Skip to main content
Log in

Extracellular urease from Arthrobacter creatinolyticus MTCC 5604: scale up, purification and its cytotoxic effect thereof

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Urease is a potent metalloenzyme with diverse applications. This paper describes the scale up and purification of an extracellular urease from Arthrobacter creatinolyticus MTCC 5604. The urease production was scaled-up in 3.7 L and 20 L fermentor. A maximum activity of 27 and 27.8 U/mL and a productivity of 0.90 and 0.99 U/mL/h were obtained at 30 h and 28 h in 3.7 and 20 L fermentor, respectively. Urease was purified to homogeneity with 49.85-fold purification by gel filtration and anion exchange chromatography with a yield of 36% and a specific activity of 1044.37 U/mg protein. The enzyme showed three protein bands with molecular mass of 72.6, 11.2 and 6.1 kDa on SDS-PAGE and ~ 270 kDa on native PAGE. The cytotoxic effect of urease was assessed in vitro using cancer cell lines (A549 and MG-63) and normal cell line (HEK 293). Urease showed its inhibitory effects on cancer cell lines through the generation of toxic ammonia, which in turn increased the pH of the surrounding medium. This increase in extracellular pH, enhanced the cytotoxic effect of weak base chemotherapeutic drugs, doxorubicin (50 µM) and vinblastine (100 µM) in the presence of urease (5 U/mL) and urea (0–4 mM) significantly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Qin Y, Cabral JMS (2002) Review properties and applications of urease. Biocatal Biotransform 20:1–14

    Article  CAS  Google Scholar 

  2. Famuyiwa OO, Ough CS (1991) Modification of acid urease activity by fluoride ions and malic acid in wines. Am J Enol Vitic 42:79–80

    CAS  Google Scholar 

  3. Dindar B, Karakus E, Abasiyanik F (2011) New urea biosensor based on urease enzyme obtained from Helicobacter pylori. Appl Biochem Biotechnol 165:1308–1321

    Article  CAS  PubMed  Google Scholar 

  4. Velichkova Y, Ivanov Y, Marinov I, Ramesh R, Kamini NR, Dimcheva N, Horozova E, Godjevargova T (2011) Amperometric electrode for determination of urea using electrodeposited rhodium and immobilized urease. J Mol Catal B 69:168–175

    Article  CAS  Google Scholar 

  5. Krajewska B, Zaborska W, Chudy M (2004) Multi-step analysis of Hg2+ ion inhibition of jack bean urease. J Inorg Biochem 98:1160–1168

    Article  CAS  PubMed  Google Scholar 

  6. Dhawan G, Sumana G, Malhotra BD (2009) Recent developments in urea biosensors. Biochem Eng J 44:42–52

    Article  CAS  Google Scholar 

  7. Carlini CR, Ligabue-Braun R (2016) Ureases as multifunctional toxic proteins: a review. Toxicon 110:90–109

    Article  CAS  PubMed  Google Scholar 

  8. Kim YH, Kim JS (2001) Characteristics of urease from Vibrio parahaemolyticus possessing tdh and trh genes isolated in Korea. J Microbiol 39:279–285

    Google Scholar 

  9. Olivera-Severo D, Wassermann G,E, Carlini CR (2006) Ureases display biological effects independent of enzymatic activity. Is there a connection todiseases caused by urease-producing bacteria? Braz J Med Biol Res 39:851–861

    Article  CAS  PubMed  Google Scholar 

  10. Wong WY, DeLuca CI, Tian B, Wilson I, Molund S, Warriar N, Govindan MV, Segal D, Chao H (2005) Urease-induced alkalinization of extracellular pH and its antitumor activity in human breast and lung cancers. J Exp Ther Oncol 5:93–99

    CAS  PubMed  Google Scholar 

  11. Stubbs M, McSheehy PM, Griffiths JR, Bashford CL (2000) Causes and consequences of tumour acidity and implications for treatment. Mol Med Today 6:15–19

    Article  CAS  PubMed  Google Scholar 

  12. Raghunand N, Gillies RJ (2002) pH and drug resistance in tumors. Drug Resist Updat 3:39–47

    Article  Google Scholar 

  13. Mahoney BP, Raghunand N, Baggett B, Gillies RJ (2003) Tumor acidity, ion trapping and chemotherapeutics I. Acid pH affects the distribution of chemotherapeutic agents in vitro. Biochem Pharmacol 66:1207–1218

    Article  CAS  PubMed  Google Scholar 

  14. Mora D, Monnet C, Parini C, Guglielmetti S, Mariani A, Pintus P, Molinari F, Daffonchio D, Manachini PL (2005) Urease biogenesis in Streptococcus thermophilus. Res Microbiol 156:897–903

    Article  CAS  PubMed  Google Scholar 

  15. Zotta T, Ricciardi A, Rossano R, Parente E (2008) Urease production by Streptococcus thermophilus. Food Microbiol 25:113–119

    Article  CAS  PubMed  Google Scholar 

  16. Ghasemi MF, Bakhtiari MR, Fallahpour M, Noohi A, Moazami N, Amidi Z (2004) Screening of urease production by Aspergillus niger strains. Iran Biomed J 8:47–50

    CAS  Google Scholar 

  17. Bakhtiari MR, Faezi MG, Fallahpour M, Noohi A, Moazami N, Amidi Z (2006) Medium optimization by orthogonal array designs for urease production by Aspergillus niger PTCC5011. Process Biochem 41:547–551

    Article  CAS  Google Scholar 

  18. Ramesh R, Aarthy M, Gowthaman MK, Gabrovska K, Godjevargova T, Kamini NR (2014) Screening and production of a potent extracellular Arthrobacter creatinolyticus urease for determination of heavy metal ions. J Basic Microbiol 54:285–295

    Article  CAS  PubMed  Google Scholar 

  19. Ramesh R, Puhazhselvan P, Jitendra K, Gowthaman MK, D’Souza SF, Kamini NR (2015) Potentiometric biosensor for determination of urea in milk using immobilized Arthrobacter creatinolyticus urease. Mater Sci Eng C 49:786–792

    Article  CAS  Google Scholar 

  20. Kumar V, Shukla P (2018) Extracellular xylanase production from T. lanuginosus VAPS 24 at pilot scale and thermostability enhancement by immobilization. Process Biochem 71:53–60

    Article  CAS  Google Scholar 

  21. Schneider WDH, Fontana RC, Mendonca S, de Siqueira FG, Dillon AJP, Camassola M (2018) High level production of laccases and peroxidases from the newly isolated white-rot basidiomycete Marasmiellus palmivorus in a stirred-tank bioreactor in response to different carbon and nitrogen sources. Process Biochem 69:1–11

    Article  CAS  Google Scholar 

  22. Aarthy M, Saravanan P, Ayyadurai N, Gowthaman MK, Kamini NR (2016) A two step process for production of omega 3-polyunsaturated fatty acid concentrates from sardine oil using Cryptococcus sp. MTCC 5455 lipase. J Mol Catal B 125:25–33

    Article  CAS  Google Scholar 

  23. Wolf-Marquez VE, Martínez-Trujilloa MA, Osorio GA, Patinod F, Álvarez MS, Rodríguez A, Sanroman MA, Deive FJ (2017) Scaling-up and ionic liquid-based extraction of pectinases from Aspergillus flavipes cultures. Bioresour Technol 225:326–335

    Article  CAS  PubMed  Google Scholar 

  24. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  CAS  PubMed  Google Scholar 

  25. Jin M, Rosario W, Watler E, Calhoun DH (2004) Development of a large-scale HPLC-based purification for the urease from Staphylococcus leei and determination of subunit structure. Prot Exp Purif 34:111–117

    Article  CAS  Google Scholar 

  26. Gabrovska K, Godjevargova T (2009) Optimum immobilization of urease on modified acrylonitrile copolymer membranes: Inactivation by heavy metal ions. J Mol Catal B 60:69–75

    Article  CAS  Google Scholar 

  27. Lowry OH, Rosebrough NJ, Farr Al, Randall RJ (1951) Protein measurement with the folin phenol reagent. J Biol Chem 193:265–275

    CAS  PubMed  Google Scholar 

  28. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  29. Carmichael J, DeGraff WG, Gazdar AF, Minna JD, Mitchell JB (1987) Evaluation of a tetrazolium based semiautomated colorimetric assay: assessment of chemosensitivity testing. Cancer Res 15:936–942

    Google Scholar 

  30. El-Bessoumy A, El-Sharouny E, Olam Z, Mothana A (2009) Purification and characterization of marine Bacillus thuringinesis N2 urease. Egypt J Biochem Mol Biol 27:61–78

    CAS  Google Scholar 

  31. Gupta RK, Dinesh P, Jaykumar S, Naidu RB, Kamini NR, Saravanan P, Gowthaman MK (2012) Scale-Up of an Alkaline Protease from Bacillus pumilus MTCC 7514 utilizing fish meal as a sole source of nutrients. J Microbiol Biotechnol 22:1230–1236

    Article  CAS  PubMed  Google Scholar 

  32. Han B, Kiers JL, Nout RMJ (1999) Solid-substrate fermentation of soybeans with Rhizopus sp.: comparison of discontinuous rotation with stationary bed fermentation. J Biosci Bioeng 88:205–209

    Article  CAS  PubMed  Google Scholar 

  33. Kakimoto S, Sumino Y, Akiyama S, Nakao Y (1989) Purification and characterization of acid urease from Lactobacillus reuteri. Agri Biol Chem 53:1119–1125

    CAS  Google Scholar 

  34. Todd MJ, Hausinger R (1987) Purification and characterization of the nickel containing multicomponent urease from Klebsiella aerogenes. J Biol Chem 262:5963–5967

    CAS  PubMed  Google Scholar 

  35. Miyagawa K, Sumida M, Nakao M, Harada M, Yamamoto H, Kusumi T, Yoshizawa K, Amachi T, Nakayama T (1999) Purification, characterization, and application of an acid urease from Arthrobacter mobilis. J Biotechnol 68:227–236

    Article  CAS  PubMed  Google Scholar 

  36. Schafer UK, Kaltwasser H (1994) Urease from Staphylococcus saprophyticus: purification, characterization and comparison to Staphylococcus xylosus urease. Arch Microbiol 161:393–399

    CAS  PubMed  Google Scholar 

  37. Yang L, Wang S, Tian Y (2010) Purification, properties, and application of a novel acid urease from Enterobacter sp. Appl Biochem Biotechnol 160:303–313

    Article  CAS  PubMed  Google Scholar 

  38. Chao H (2011) DOS47—killing cancer by altering the tumor microenvironment drug development and delivery. Drug Dev Deliv 11:68–72

    Google Scholar 

  39. Raghunand N, Gatenby RA, Gillies RJ (2003) Micro environmental and cellular consequences of altered blood flow in tumours. Br J Radiol 76:11–22

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the Director, CSIR - Central Leather Research Institute, Chennai, India, for his kind permission to publish this work. The financial assistance rendered by University Grants Commission and DST - INSPIRE, Government of India is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kamini Numbi Ramudu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rajendran, R., Pandi, A., Ramchary, A. et al. Extracellular urease from Arthrobacter creatinolyticus MTCC 5604: scale up, purification and its cytotoxic effect thereof. Mol Biol Rep 46, 133–141 (2019). https://doi.org/10.1007/s11033-018-4453-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-018-4453-8

Keywords

Navigation