Skip to main content

Advertisement

Log in

Royal jelly mitigates cadmium-induced neuronal damage in mouse cortex

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

This study aimed to evaluate the potential neuroprotective effect of royal jelly (RJ) against Cd-induced neuronal damage. Twenty-eight adult mice were placed equally into four groups. The control group received intraperitoneal (IP) injections of normal saline; the cadmium chloride (CdCl2) group was IP-injected 6.5 mg/kg (mg per kg of bodyweight) CdCl2; the RJ group was gavaged 85 mg/kg RJ; and the RJ + CdCl2 group was orally administered 85 mg/kg RJ 2 h before receiving IP-injections of 6.5 mg/kg CdCl2. All groups were treated for seven consecutive days and the mice were decapitated 24 h after the final dose. Cd accumulation was recorded in the cortical homogenates, accompanied by elevated levels of lipid peroxidation, nitric oxide, tumor necrosis factor-α, interleukin-1β, and the pro-apoptotic mRNA Bax and caspase-3. Meanwhile, significantly decreased levels of detoxifying antioxidant enzymes including GSH-Px, GSH-R, SOD, and CAT, anti-apoptotic mRNA Bcl-2, and monoamines such as norepinephrine, dopamine, and serotonin were also observed, along with reduced gene expression of Nrf2-dependent antioxidants. Interestingly, in mice pretreated with RJ, the assessed parameters remained near normal levels. Our data provide evidence that RJ treatment has the potential to protect cortical neurons in Cd-intoxicated mice via its antioxidant, anti-inflammatory, anti-apoptotic, and neuromodulatory activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Thevenod F, Lee WK (2013) Cadmium and cellular signaling cascades: interactions between cell death and survival pathways. Arch Toxicol 87(10):1743–1786. https://doi.org/10.1007/s00204-013-1110-9

    Article  CAS  PubMed  Google Scholar 

  2. Bernhoft RA (2013) Cadmium toxicity and treatment. Sci World J 2013:394652. https://doi.org/10.1155/2013/394652

    Article  CAS  Google Scholar 

  3. Ercal N, Gurer-Orhan H, Aykin-Burns N (2001) Toxic metals and oxidative stress part I: mechanisms involved in metal-induced oxidative damage. Curr Top Med Chem 1(6):529–539

    Article  CAS  PubMed  Google Scholar 

  4. Elkhadragy MF, Kassab RB, Metwally DM, Almeer R, Abdel-Gaber R, Al-Olayan EM, Essawy EA, Amin HK, Abdel Moneim AE (2018) Protective effects of Fragaria ananassa methanolic extract in a rat model of cadmium chloride-induced neurotoxicity. Biosci Rep. https://doi.org/10.1042/bsr20180861

    Article  PubMed  PubMed Central  Google Scholar 

  5. Barnham KJ, Bush AI (2008) Metals in Alzheimer’s and Parkinson’s diseases. Curr Opin Chem Biol 12(2):222–228. https://doi.org/10.1016/j.cbpa.2008.02.019

    Article  CAS  PubMed  Google Scholar 

  6. Ashok A, Rai NK, Tripathi S, Bandyopadhyay S (2015) Exposure to As-, Cd-, and Pb-mixture induces Abeta, amyloidogenic APP processing and cognitive impairments via oxidative stress-dependent neuroinflammation in young rats. Toxicol Sci 143(1):64–80. https://doi.org/10.1093/toxsci/kfu208

    Article  CAS  PubMed  Google Scholar 

  7. Yuan Y, Wang Y, Hu FF, Jiang CY, Zhang YJ, Yang JL, Zhao SW, Gu JH, Liu XZ, Bian JC, Liu ZP (2016) Cadmium activates reactive oxygen species-dependent AKT/mTOR and mitochondrial apoptotic pathways in neuronal cells. Biomed Environ Sci 29(2):117–126. https://doi.org/10.3967/bes2016.013

    Article  PubMed  Google Scholar 

  8. Al Omairi NE, Radwan OK, Alzahrani YA, Kassab RB (2018) Neuroprotective efficiency of Mangifera indica leaves extract on cadmium-induced cortical damage in rats. Metab Brain Dis. https://doi.org/10.1007/s11011-018-0222-6

    Article  PubMed  Google Scholar 

  9. Yuan Y, Jiang CY, Xu H, Sun Y, Hu FF, Bian JC, Liu XZ, Gu JH, Liu ZP (2013) Cadmium-induced apoptosis in primary rat cerebral cortical neurons culture is mediated by a calcium signaling pathway. PLoS ONE 8(5):e64330. https://doi.org/10.1371/journal.pone.0064330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Almeer RS, Alarifi S, Alkahtani S, Ibrahim SR, Ali D, Moneim A (2018) The potential hepatoprotective effect of royal jelly against cadmium chloride-induced hepatotoxicity in mice is mediated by suppression of oxidative stress and upregulation of Nrf2 expression. Biomed Pharmacother 106:1490–1498. https://doi.org/10.1016/j.biopha.2018.07.089

    Article  CAS  PubMed  Google Scholar 

  11. McCarty MF (2012) Zinc and multi-mineral supplementation should mitigate the pathogenic impact of cadmium exposure. Med Hypotheses 79(5):642–648. https://doi.org/10.1016/j.mehy.2012.07.043

    Article  CAS  PubMed  Google Scholar 

  12. Fratini F, Cilia G, Mancini S, Felicioli A (2016) Royal Jelly: An ancient remedy with remarkable antibacterial properties. Microbiol Res 192:130–141. https://doi.org/10.1016/j.micres.2016.06.007

    Article  CAS  PubMed  Google Scholar 

  13. Melliou E, Chinou I (2005) Chemistry and bioactivity of royal jelly from Greece. J Agric Food Chem 53(23):8987–8992. https://doi.org/10.1021/jf051550p

    Article  CAS  PubMed  Google Scholar 

  14. Malka O, Karunker I, Yeheskel A, Morin S, Hefetz A (2009) The gene road to royalty–differential expression of hydroxylating genes in the mandibular glands of the honeybee. FEBS J 276(19):5481–5490. https://doi.org/10.1111/j.1742-4658.2009.07232.x

    Article  CAS  PubMed  Google Scholar 

  15. Zhang L, Fang Y, Li R, Feng M, Han B, Zhou T, Li J (2012) Towards posttranslational modification proteome of royal jelly. J Proteom 75(17):5327–5341. https://doi.org/10.1016/j.jprot.2012.06.008

    Article  CAS  Google Scholar 

  16. Aslan Z, Aksoy L (2015) Anti-inflammatory effects of royal jelly on ethylene glycol induced renal inflammation in rats. Int Braz J Urol 41(5):1008–1013. https://doi.org/10.1590/S1677-5538.IBJU.2014.0470

    Article  PubMed  PubMed Central  Google Scholar 

  17. Mohamed AA, Galal AA, Elewa YH (2015) Comparative protective effects of royal jelly and cod liver oil against neurotoxic impact of tartrazine on male rat pups brain. Acta Histochem 117(7):649–658. https://doi.org/10.1016/j.acthis.2015.07.002

    Article  CAS  PubMed  Google Scholar 

  18. Yoshida M, Hayashi K, Watadani R, Okano Y, Tanimura K, Kotoh J, Sasaki D, Matsumoto K, Maeda A (2017) Royal jelly improves hyperglycemia in obese/diabetic KK-Ay mice. J Vet Med Sci 79(2):299–307. https://doi.org/10.1292/jvms.16-0458

    Article  CAS  PubMed  Google Scholar 

  19. Zhang S, Shao Q, Geng H, Su S (2017) The effect of royal jelly on the growth of breast cancer in mice. Oncol Lett 14(6):7615–7621. https://doi.org/10.3892/ol.2017.7078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Pyrzanowska J, Wawer A, Joniec-Maciejak I, Piechal A, Blecharz-Klin K, Graikou K, Chinou I, Widy-Tyszkiewicz E (2018) Long-term administration of Greek Royal Jelly decreases GABA concentration in the striatum and hypothalamus of naturally aged Wistar male rats. Neuroscience Lett 675:17–22. https://doi.org/10.1016/j.neulet.2018.03.034

    Article  CAS  Google Scholar 

  21. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193(1):265–275

    CAS  PubMed  Google Scholar 

  22. Ellman GL, Courtney KD, Andres V Jr, Feather-Stone RM (1961) A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol 7:88–95

    Article  CAS  PubMed  Google Scholar 

  23. Paglia DE, Valentine WN (1967) Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase. J Lab Clin Med 70(1):158–169

    CAS  PubMed  Google Scholar 

  24. De Vega L, Fernandez RP, Mateo MC, Bustamante JB, Herrero AM, Munguira EB (2002) Glutathione determination and a study of the activity of glutathione-peroxidase, glutathione-transferase, and glutathione-reductase in renal transplants. Ren Fail 24(4):421–432

    Article  PubMed  Google Scholar 

  25. Nishikimi M, Appaji N, Yagi K (1972) The occurrence of superoxide anion in the reaction of reduced phenazine methosulfate and molecular oxygen. Biochem Biophys Res Commun 46(2):849–854

    Article  CAS  PubMed  Google Scholar 

  26. Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126

    Article  CAS  PubMed  Google Scholar 

  27. Ohkawa H, Ohishi N, Yagi K (1979) Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 95(2):351–358

    Article  CAS  PubMed  Google Scholar 

  28. Green LC, Wagner DA, Glogowski J, Skipper PL, Wishnok JS, Tannenbaum SR (1982) Analysis of nitrate, nitrite, and [15N]nitrate in biological fluids. Anal Biochem 126(1):131–138

    Article  CAS  PubMed  Google Scholar 

  29. Shackelford C, Long G, Wolf J, Okerberg C, Herbert R (2002) Qualitative and quantitative analysis of nonneoplastic lesions in toxicology studies. Toxicol Pathol 30:93–96

    Article  PubMed  Google Scholar 

  30. Branca JJV, Morucci G, Maresca M, Tenci B, Cascella R, Paternostro F, Ghelardini C, Gulisano M, Di Cesare Mannelli L, Pacini A (2018) Selenium and zinc: two key players against cadmium-induced neuronal toxicity. Toxicol In Vitro 48:159–169. https://doi.org/10.1016/j.tiv.2018.01.007

    Article  CAS  PubMed  Google Scholar 

  31. Goncalves JF, Fiorenza AM, Spanevello RM, Mazzanti CM, Bochi GV, Antes FG, Stefanello N, Rubin MA, Dressler VL, Morsch VM, Schetinger MR (2010) N-acetylcysteine prevents memory deficits, the decrease in acetylcholinesterase activity and oxidative stress in rats exposed to cadmium. Chem Biol Interact 186(1):53–60. https://doi.org/10.1016/j.cbi.2010.04.011

    Article  CAS  PubMed  Google Scholar 

  32. Abdel Moneim AE, Bauomy AA, Diab MM, Shata MT, Al-Olayan EM, El-Khadragy MF (2014) The protective effect of Physalis peruviana L. against cadmium-induced neurotoxicity in rats. Biol Trace Elem Res 160(3):392–399. https://doi.org/10.1007/s12011-014-0066-9

    Article  CAS  PubMed  Google Scholar 

  33. Sultana R, Perluigi M, Allan Butterfield D (2013) Lipid peroxidation triggers neurodegeneration: a redox proteomics view into the Alzheimer disease brain. Free Radic Biol Med 62:157–169. https://doi.org/10.1016/j.freeradbiomed.2012.09.027

    Article  CAS  PubMed  Google Scholar 

  34. Wei T, Chen C, Hou J, Xin W, Mori A (2000) Nitric oxide induces oxidative stress and apoptosis in neuronal cells. Biochim Biophys Acta 1498(1):72–79

    Article  CAS  PubMed  Google Scholar 

  35. Guo H, Ekusa A, Iwai K, Yonekura M, Takahata Y, Morimatsu F (2008) Royal jelly peptides inhibit lipid peroxidation in vitro and in vivo. J Nutr Sci Vitaminol 54(3):191–195

    Article  CAS  PubMed  Google Scholar 

  36. Shagirtha K, Muthumani M, Prabu SM (2011) Melatonin abrogates cadmium induced oxidative stress related neurotoxicity in rats. Eur Rev Med Pharmacol Sci 15(9):1039–1050

    CAS  PubMed  Google Scholar 

  37. Rana SV, Verma S (1996) Protective effects of GSH, vitamin E, and selenium on lipid peroxidation in cadmium-fed rats. Biol Trace Elem Res 51(2):161–168. https://doi.org/10.1007/BF02785435

    Article  CAS  PubMed  Google Scholar 

  38. Amara S, Douki T, Garrel C, Favier A, Ben Rhouma K, Sakly M, Abdelmelek H (2011) Effects of static magnetic field and cadmium on oxidative stress and DNA damage in rat cortex brain and hippocampus. Toxicol Ind Health 27(2):99–106. https://doi.org/10.1177/0748233710381887

    Article  CAS  PubMed  Google Scholar 

  39. Wang B, Du Y (2013) Cadmium and its neurotoxic effects. Oxidative Med Cell Longev 2013:898034. https://doi.org/10.1155/2013/898034

    Article  CAS  Google Scholar 

  40. Teixeira RR, de Souza AV, Peixoto LG, Machado HL, Caixeta DC, Vilela DD, Baptista NB, Franci CR, Espindola FS (2017) Royal jelly decreases corticosterone levels and improves the brain antioxidant system in restraint and cold stressed rats. Neurosci Lett 655:179–185. https://doi.org/10.1016/j.neulet.2017.07.010

    Article  CAS  PubMed  Google Scholar 

  41. Aslan A, Cemek M, Buyukokuroglu ME, Altunbas K, Bas O, Yurumez Y (2012) Royal jelly can diminish secondary neuronal damage after experimental spinal cord injury in rabbits. Food Chem Toxicol 50(7):2554–2559. https://doi.org/10.1016/j.fct.2012.04.018

    Article  CAS  PubMed  Google Scholar 

  42. Ahmed MM, El-Shazly SA, Alkafafy ME, Mohamed AA, Mousa AA (2018) Protective potential of royal jelly against cadmium-induced infertility in male rats. Andrologia. https://doi.org/10.1111/and.12996

    Article  PubMed  Google Scholar 

  43. Moutsatsou P, Papoutsi Z, Kassi E, Heldring N, Zhao C, Tsiapara A, Melliou E, Chrousos GP, Chinou I, Karshikoff A, Nilsson L, Dahlman-Wright K (2010) Fatty acids derived from royal jelly are modulators of estrogen receptor functions. PLoS ONE 5(12):e15594. https://doi.org/10.1371/journal.pone.0015594

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Prokai-Tatrai K, Perjesi P, Rivera-Portalatin NM, Simpkins JW, Prokai L (2008) Mechanistic investigations on the antioxidant action of a neuroprotective estrogen derivative. Steroids 73(3):280–288. https://doi.org/10.1016/j.steroids.2007.10.011

    Article  CAS  PubMed  Google Scholar 

  45. Mladenović J, Ognjanović B, Đorđević N, Matić M, Knežević V, Štajn A, Saičić Z (2014) Protective effects of oestradiol against cadmium-induced changes in blood parameters and oxidative damage in rats. Arch Ind Hyg Toxicol 65:37–46. https://doi.org/10.2478/10004-1254-65-2014-2405

    Article  CAS  Google Scholar 

  46. Zhao X, Sun G, Zhang J, Strong R, Dash PK, Kan YW, Grotta JC, Aronowski J (2007) Transcription factor Nrf2 protects the brain from damage produced by intracerebral hemorrhage. Stroke 38(12):3280–3286. https://doi.org/10.1161/STROKEAHA.107.486506

    Article  CAS  PubMed  Google Scholar 

  47. Pan H, Wang H, Zhu L, Mao L, Qiao L, Su X (2011) Depletion of Nrf2 enhances inflammation induced by oxyhemoglobin in cultured mice astrocytes. Neurochem Res 36(12):2434–2441. https://doi.org/10.1007/s11064-011-0571-6

    Article  CAS  PubMed  Google Scholar 

  48. Saleh HM, El-Sayed YS, Naser SM, Eltahawy AS, Onoda A, Umezawa M (2017) Efficacy of alpha-lipoic acid against cadmium toxicity on metal ion and oxidative imbalance, and expression of metallothionein and antioxidant genes in rabbit brain. Environ Sci Pollut Res Int 24(31):24593–24601. https://doi.org/10.1007/s11356-017-0158-0

    Article  CAS  PubMed  Google Scholar 

  49. Freitas M, Fernandes E (2011) Zinc, cadmium and nickel increase the activation of NF-kappaB and the release of cytokines from THP-1 monocytic cells. Metallomics 3(11):1238–1243. https://doi.org/10.1039/c1mt00050k

    Article  CAS  PubMed  Google Scholar 

  50. Liu Z, Li P, Zhao D, Tang H, Guo J (2011) Anti-inflammation effects of Cordyceps sinensis mycelium in focal cerebral ischemic injury rats. Inflammation 34(6):639–644. https://doi.org/10.1007/s10753-010-9273-5

    Article  PubMed  Google Scholar 

  51. You M-M, Chen Y-F, Pan Y-M, Liu Y-C, Tu J, Wang K, Hu F-L (2018) Royal jelly attenuates LPS-induced inflammation in BV-2 microglial cells through modulating NF-κB and p38/JNK signaling pathways. Mediators Inflamm. https://doi.org/10.1155/2018/7834381

    Article  PubMed  PubMed Central  Google Scholar 

  52. Fernandez EL, Gustafson AL, Andersson M, Hellman B, Dencker L (2003) Cadmium-induced changes in apoptotic gene expression levels and DNA damage in mouse embryos are blocked by zinc. Toxicol Sci 76(1):162–170. https://doi.org/10.1093/toxsci/kfg208

    Article  CAS  PubMed  Google Scholar 

  53. Mahdavi S, Khodarahmi P, Roodbari NH (2018) Effects of cadmium on Bcl-2/Bax expression ratio in rat cortex brain and hippocampus. Hum Exp Toxicol 37(3):321–328. https://doi.org/10.1177/0960327117703687

    Article  CAS  PubMed  Google Scholar 

  54. Annunziato L, Amoroso S, Pannaccione A, Cataldi M, Pignataro G, D’Alessio A, Sirabella R, Secondo A, Sibaud L, Di Renzo GF (2003) Apoptosis induced in neuronal cells by oxidative stress: role played by caspases and intracellular calcium ions. Toxicol Lett 139(2–3):125–133

    Article  CAS  PubMed  Google Scholar 

  55. Chen S, Xu Y, Xu B, Guo M, Zhang Z, Liu L, Ma H, Chen Z, Luo Y, Huang S, Chen L (2011) CaMKII is involved in cadmium activation of MAPK and mTOR pathways leading to neuronal cell death. J Neurochem 119(5):1108–1118. https://doi.org/10.1111/j.1471-4159.2011.07493.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Afifi OK, Embaby AS (2016) Histological study on the protective role of ascorbic acid on cadmium induced cerebral cortical neurotoxicity in adult male albino rats. J Microsc Ultrastruct 4(1):36–45

    Article  PubMed  Google Scholar 

  57. Carageorgiou H, Tzotzes V, Pantos C, Mourouzis C, Zarros A, Tsakiris S (2004) In vivo and in vitro effects of cadmium on adult rat brain total antioxidant status, acetylcholinesterase, (Na+, K+)-ATPase and Mg2+-ATPase activities: protection by L-cysteine. Basic Clin Pharmacol Toxicol 94(3):112–118

    Article  CAS  PubMed  Google Scholar 

  58. Slotkin TA (2004) Cholinergic systems in brain development and disruption by neurotoxicants: nicotine, environmental tobacco smoke, organophosphates. Toxicol Appl Pharmacol 198(2):132–151. https://doi.org/10.1016/j.taap.2003.06.001

    Article  CAS  PubMed  Google Scholar 

  59. Maodaa SN, Allam AA, Ajarem J, Abdel-Maksoud MA, Al-Basher GI, Wang ZY (2016) Effect of parsley (Petroselinum crispum, Apiaceae) juice against cadmium neurotoxicity in albino mice (Mus musculus). Behav Brain Funct 12(1):6. https://doi.org/10.1186/s12993-016-0090-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Lizarraga LE, Cholanians AB, Phan AV, Herndon JM, Lau SS, Monks TJ (2015) Vesicular monoamine transporter 2 and the acute and long-term response to 3,4-(±)-methylenedioxymethamphetamine. Toxicol Sci 143(1):209–219

    Article  CAS  PubMed  Google Scholar 

  61. Biradar SM, Joshi H, Chheda TK (2012) Neuropharmacological effect of Mangiferin on brain cholinesterase and brain biogenic amines in the management of Alzheimer’s disease. Eur J Pharmacol 683(1–3):140–147. https://doi.org/10.1016/j.ejphar.2012.02.042

    Article  CAS  PubMed  Google Scholar 

  62. Xu B, Chen S, Luo Y, Chen Z, Liu L, Zhou H, Chen W, Shen T, Han X, Chen L, Huang S (2011) Calcium signaling is involved in cadmium-induced neuronal apoptosis via induction of reactive oxygen species and activation of MAPK/mTOR network. PLoS ONE 6(4):e19052. https://doi.org/10.1371/journal.pone.0019052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Hattori N, Nomoto H, Fukumitsu H, Mishima S, Furukawa S (2007) Royal jelly and its unique fatty acid, 10-hydroxy-trans-2-decenoic acid, promote neurogenesis by neural stem/progenitor cells in vitro. Biomed Res 28(5):261–266

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to extend their sincere appreciation to the Deanship of Scientific Research at King Saud University for its funding of this research through the research Group Project No. RGP-180.

Funding

This research was supported by the Deanship of Scientific Research at King Saud University. Research Project No. RGP-180.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rafa S. Almeer.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 12 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Almeer, R.S., Kassab, R.B., AlBasher, G.I. et al. Royal jelly mitigates cadmium-induced neuronal damage in mouse cortex. Mol Biol Rep 46, 119–131 (2019). https://doi.org/10.1007/s11033-018-4451-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-018-4451-x

Keywords

Navigation