Molecular Biology Reports

, Volume 46, Issue 1, pp 97–103 | Cite as

Development of a new tobamovirus-based viral vector for protein expression in plants

  • Raquel Medeiros Vasques
  • Cristiano Lacorte
  • Leonardo Lopes da Luz
  • Miguel A. Aranda
  • Tatsuya NagataEmail author
Original Article


Plants are becoming an interesting alternative system for the heterologous production of pharmaceutical proteins, providing a more scalable, cost-effective, and biologically safer option than the current expression systems. The development of plant virus expression vectors has allowed rapid and high-level transient expression of recombinant genes, and, in turn, provided an attractive plant-based production platform. Here we report the development of vectors based on the tobamovirus Pepper mild mottle virus (PMMoV) to be used in transient expression of foreign genes. In this PMMoV vector, a middle part of the viral coat protein gene was replaced by the green fluorescent protein (GFP) gene, and this recombinant genome was assembled in a binary vector suitable for plant agroinoculation. The accumulation of GFP was evaluated by observation of green fluorescent signals under UV light and by western blotting. Furthermore, by using this vector, the multiepitope gene for chikungunya virus was successfully expressed and confirmed by western blotting. This PMMoV-based vector represents an alternative system for a high-level production of heterologous protein in plants.


Plant viral vector Protein expression in plants Transient expression Agroinfiltration Tobamovirus 



This study was funded by the Brazilian National Council for Scientific and Technological Development, CNPq (Grant Number 401755/2013-4).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Yusibov V, Streatfield SJ, Kushnir N (2011) Clinical development of plant-produced recombinant pharmaceuticals: vaccines, antibodies, and beyond. Hum Vaccin 7:313–321CrossRefPubMedGoogle Scholar
  2. 2.
    Paul M, Ma JK-C (2011) Plant-made pharmaceuticals: leading products and production platforms. Biotechnol Appl Biochem 58:58–67CrossRefPubMedGoogle Scholar
  3. 3.
    Baulcombe DC, Chapman S, Santa Cruz S (1995) Jellyfish green fluorescent protein as a reporter for virus infections. Plant J 7:1045–1053CrossRefPubMedGoogle Scholar
  4. 4.
    Burch-Smith TM, Anderson JC, Martin GB, Dinesh-Kumar SP (2004) Applications and advantages of virus-induced gene silencing for gene function studies in plants. Plant J 39:734–746CrossRefPubMedGoogle Scholar
  5. 5.
    Escobar NM, Haupt S, Thow G, Boevink P, Chapman S, Oparka K (2003) High-throughput viral expression of cDNA-green fluorescent protein fusions reveals novel subcellular addresses and identifies unique proteins that interact with plasmodesmata. Plant Cell 15:1507–1523CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Liu Y, Schiff M, Dinesh-Kumar SP (2002) Virus-induced gene silencing in tomato. Plant J 31:777–786CrossRefPubMedGoogle Scholar
  7. 7.
    Lico C, Chen Q, Santi L (2008) Viral vectors for production of recombinant proteins in plants. J Cell Physiol 216:366–377CrossRefPubMedGoogle Scholar
  8. 8.
    Dawson WO, Lewandowski DJ, Hilf ME, Bubrick P, Raffo AJ, Shaw JJ, Grantham GL, Desjardins PR (1989) A tobacco mosaic virus-hybrid expresses and loses an added gene. Virology 172:285–292CrossRefPubMedGoogle Scholar
  9. 9.
    Donson J, Kearney CM, Hilf ME, Dawson WO (1991) Systemic expression of a bacterial gene by a tobacco mosaic virus-based vector. Proc Natl Acad Sci USA 88:7204–7208CrossRefPubMedGoogle Scholar
  10. 10.
    Azhakanandam K, Weissinger SM, Nicholson JS, Qu R, Weissinger AK (2007) Amplicon-plus targeting technology (APTT) for rapid production of a highly unstable vaccine protein in tobacco plants. Plant Mol Biol 63:393–404CrossRefPubMedGoogle Scholar
  11. 11.
    Lindbo JA (2007) TRBO: a high-efficiency tobacco mosaic virus RNA-based overexpression vector. Plant Physiol 145:1232–1240CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Voinnet O, Rivas S, Mestre P, Baulcombe D (2003) An enhanced transient expression system in plants based on suppression of gene silencing by the p19 protein of tomato bushy stunt virus. Plant J 33:949–956CrossRefPubMedGoogle Scholar
  13. 13.
    Lindbo JA (2007) High-efficiency protein expression in plants from agroinfection-compatible tobacco mosaic virus expression vectors. BMC Biotechnol 7:52CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Rhee SJ, Jang YJ, Lee GP (2016) Identification of the subgenomic promoter of the coat protein gene of cucumber fruit mottle mosaic virus and development of a heterologous expression vector. Arch Virol 161:1527–1538CrossRefPubMedGoogle Scholar
  15. 15.
    Liu Z, Kearney CM (2010) A tobamovirus expression vector for agroinfection of legumes and Nicotiana. J Biotechnol 147:151–159CrossRefPubMedGoogle Scholar
  16. 16.
    Mlotshwa S, Verver J, Sithole-Niang I, Prins M, Van Kammen AB, Wellink J (2002) Transgenic plants expressing HC-Pro show enhanced virus sensitivity while silencing of the transgene results in resistance. Virus Genes 25:45–57CrossRefPubMedGoogle Scholar
  17. 17.
    Gleba Y, Klimyuk V, Marillonnet S (2007) Viral vectors for the expression of proteins in plants. Curr Opin Biotech 18:134–141CrossRefPubMedGoogle Scholar
  18. 18.
    Mallory AC, Parks G, Endres MW, Baulcombe D, Bowman LH, Pruss GJ, Vance VB (2002) The amplicon-plus system for high-level expression of transgenes in plants. Nat Biotechnol 20:622–625CrossRefPubMedGoogle Scholar
  19. 19.
    Pogue GP, Lindbo JA, Garger SJ, Fitzmaurice WP (2002) Making an ally from an enemy: plant virology and the new agriculture. Annu Rev Phytopathol 40:45–74CrossRefPubMedGoogle Scholar
  20. 20.
    Alonso E, García-Luque I, de la Cruz A, Wicke B, Avila-Rincón MJ, Serra MT, Castresana C, Díaz-Ruíz JR (1991) Nucleotide sequence of the genomic RNA of pepper mild mottle virus, a resistance-breaking tobamovirus in pepper. J Gen Virol 72:2875–2884CrossRefPubMedGoogle Scholar
  21. 21.
    Eiras M, Chaves ALR, Moreira SR, Araujo J, De, Colariccio A (2004) Caracterização de um Isolado do Pepper mild mottle virus que não Quebra a Resistência do Gene L3 em Capsicum sp. Fitopatol Brasil 29:670–675CrossRefGoogle Scholar
  22. 22.
    Dawson W, Lehto KM (1990) Regulation of tobamovirus gene expression. In Maramorosch K, Murphy FA, Shatkin AJ (eds) Advances in virus research, vol 38. Elsevier, New York, pp 307–342Google Scholar
  23. 23.
    Junqueira BRT, Nicolini C, Lucinda N, Orílio AF, Nagata T (2014) A simplified approach to construct infectious cDNA clones of a tobamovirus in a binary vector. J Virol Methods 198:32–36CrossRefPubMedGoogle Scholar
  24. 24.
    Gibson DG, Young L, Chuang R-Y, Venter JC, Hutchison CA, Smith HO (2009) Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat Methods 6:343–345CrossRefPubMedGoogle Scholar
  25. 25.
    Man M, Epel BL (2004) Characterization of regulatory elements within the coat protein (CP) coding region of Tobacco mosaic virus affecting subgenomic transcription and green flourescent protein expression from the CP subgenomic RNA promoter. J Gen Virol 85:1727–1738CrossRefPubMedGoogle Scholar
  26. 26.
    Kam Y-W, Lum F-M, Teo T-H, Lee WWL, Simarmata D, Harjanto S, Chua C-L, Chan Y-F, Wee J-K, Chow A, Lin RTP, Leo Y-S, Le Grand R, Sam I-C, Tong J-C, Roques P, Wiesmüller KH, Rénia L, Rötzschke O, Ng LFP (2012) Early neutralizing IgG response to Chikungunya virus in infected patients targets a dominant linear epitope on the E2 glycoprotein. EMBO Mol Med 4:330–343CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Blawid R, Nagata T (2015) Construction of an infectious clone of a plant RNA virus in a binary vector using one-step Gibson assembly. J Virol Methods 222:11–15CrossRefPubMedGoogle Scholar
  28. 28.
    Marillonnet S, Giritch A, Gils M, Kandzia R, Klimyuk V, Gleba Y (2004) In planta engineering of viral RNA replicons: efficient assembly by recombination of DNA modules delivered by Agrobacterium. Proc Natl Acad Sci USA 101:6852–6857CrossRefPubMedGoogle Scholar
  29. 29.
    Musiychuk K, Stephenson N, Bi H, Farrance CE, Orozovic G, Brodelius M, Brodelius P, Horsey A, Ugulava N, Shamloul A-M, Mett V, Rabindram S, Streatfield SJ, Yusibov V (2007) A launch vector for the production of vaccine antigens in plants. Influenza Other Resp 1:19–25CrossRefGoogle Scholar
  30. 30.
    Kumagai MH, Donson J, della-Cioppa G, Grill LK (2000) Rapid, high-level expression of glycosylated rice alpha-amylase in transfected plants by an RNA viral vector. Gene 245:169–174CrossRefPubMedGoogle Scholar
  31. 31.
    Kubota K, Tsuda S, Tamai A, Meshi T (2003) Tomato mosaic virus replication protein suppresses virus-targetted posttranscriptional gene silencing. J Virol 77:11016–11026CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Vogler H, Akbergenov R, Shivaprasad PV, Dang V, Fasler M, Kwon M-O, Zhanybekova S, Hohn T, Heinlein M (2007) Modification of small RNAs associated with suppression of RNA silencing by tobamovirus replicase protein. J Virol 81:10379–10388CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Souza AC, Vasques RM, Inoue-Nagata AK, Lacorte C, Maldaner FR, Noronha EF, Nagata T (2013) Expression and assembly of Norwalk virus-like particles in plants using a viral RNA silencing suppressor gene. Appl Microbiol Biotechnol 97:9021–9027CrossRefPubMedGoogle Scholar
  34. 34.
    Mallory AC, Ely L, Smith TH, Marathe R, Anandalakshmi R, Fagard M, Vaucheret H, Pruss G, Bowman L, Vance BV (2001) HC-Pro suppression of transgene silencing eliminates the small RNAs but not transgene methylation or the mobile signal. Plant Cell 13:571–583CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Departamento de Biologia CelularUniversidade de BrasíliaBrasíliaBrazil
  2. 2.Embrapa Recursos Genéticos e BiotecnologiaBrasíliaBrazil
  3. 3.Centro de Edafología y Biología Aplicada del Segura (CEBAS)Consejo Superior de Investigaciones Científicas (CSIC)MurciaSpain

Personalised recommendations