Skip to main content
Log in

Uncoupling Warburg effect and stemness in CD133+ve cancer stem cells from Saos-2 (osteosarcoma) cell line under hypoxia

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Cancer stem cells (CSCs) which are known to be residing deep inside the core of the tumor in its hypoxia niche is responsible for relapse of cancers. Owing to this hypoxic niche, the residing CSCs simultaneously fuel their stemness, cancerous and drug resistance properties. Attributes of CSCs are still not properly understood in its hypoxia niche. Addressing this, we sorted CSCs from Saos-2 (osteosarcoma) cell line using CD133 antibody. The CD133+ve CSCs exhibited quiescent cell proliferation in DNA doubling, Ca2+ signaling and cell cycle analysis. CD133+ve CSCs exhibited increased production of ATP and lactate dehydrogenase (LDH) activity under hypoxia. CD133+ve cells exhibited decreased glucose uptake compared to ATP levels under hypoxia. Moreover, there was only negligible LDH activity in CD133+ve cells under normoxia which do not rely on Warburg effect. Stemness markers (such as c-Myc, SOX2, Oct4 and TERT), metastasis marker (CD44) and drug resistance marker (ABCG2) were highly expressed in CD133+ve cells. In summary, both CD133+ve/−ve cells of Saos-2 (osteosarcoma) cell line did not exhibit Warburg effect under normoxic condition. Moreover, this significantly indicates an uncoupling between stemness and Warburg effect in CD133+ve. This work provides a novel insight into the metabolic and functional features of CSCs in a hypoxic environment which could open new avenues for therapeutic strategies aimed to target CSCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Ottaviani G, Jaffe N (2009) The epidemiology of osteosarcoma. Cancer Treat Res 152:3–13

    Article  Google Scholar 

  2. Visvader JE, Lindeman GJ (2012) Cancer stem cells: current status and evolving complexities. Cell Stem Cell 10:717–728

    Article  CAS  Google Scholar 

  3. Miranda-Lorenzo I, Dorado J, Lonardo E, Alcala S, Serrano AG, Clausell-Tormos J, Cioffi M, Megias D, Zagorac S, Balic A, Hidalgo M, Erkan M, Kleeff J, Scarpa A, Sainz B Jr, Heeschen C (2014) Intracellular auto fluorescence: a biomarker for epithelial cancer stem cells. Nat Methods 11:1161–1169

    Article  CAS  Google Scholar 

  4. Palmini G, Zonefrati R, Romagnoli C, Aldinucci A, Mavilia C, Leoncini G, Franchi A, Capanna R, Brandi ML (2016) Establishment and characterization of a human small cell osteosarcoma cancer stem cell line: a new possible in vitro model for discovering small cell osteosarcoma biology. Stem Cells Int 1–18

    Article  Google Scholar 

  5. Gibbs CP Jr, Levings PP, Ghivizzani SC (2012) Evidence for the osteosarcoma stem cell. Curr Orthop Pract 4:322–326

    Google Scholar 

  6. Siclari VA, Qin L (2010) Targeting the osteosarcoma cancer stem cell. J Orthop Surg Res 5:1–10

    Article  Google Scholar 

  7. Borah A, Raveendran S, Rochani A, Maekawa T, Kumar DS (2015) Targeting self-renewal pathways in cancer stem cells: clinical implications for cancer therapy. Oncogenesis 4:1–11

    Article  Google Scholar 

  8. Huang R, Rofstad EK (2017) Cancer stem cells (CSCs), cervical CSCs and targeted therapies. Oncotarget 8:35351–35367

    PubMed  Google Scholar 

  9. Ricci-Vitiani L, Lombardi DG, Pilozzi E, Biffoni M, Todaro M, Peschle C, De Maria R (2007) Identification and expansion of human colon-cancer-initiating cells. Nat Lett 445:111–115

    Article  CAS  Google Scholar 

  10. Tirino V, Desiderio V, d’Aquino R, De Francesco F, Pirozzi G, Galderisi U, Cavaliere C, De Rosa A, Papaccio G (2008) Detection and characterization of CD133+ ve cancer stem cells in human solid tumours. PLoS ONE 3:e3469

    Article  Google Scholar 

  11. Sotgia F, Martinez-Outschoorn UE, Lisanti MP (2014) The reverse Warburg effect in osteosarcoma. Oncotarget 5:7982–7983

    Article  Google Scholar 

  12. Pavlides S, Whitaker-Menezes D, Castello-Cros R, Flomenberg N, Witkiewicz AK, Frank PG, Casimiro MC, Wang C, Fortina P, Addya S, Pestell RG, Martinez-Outschoorn UE, Sotgia F, Lisanti MP (2017) The reverse Warburg effect: aerobic glycolysis in cancer associated fibroblasts and the tumor stroma. Cell Cycle 8:3984–4001

    Article  Google Scholar 

  13. Zeng W, Wan R, Zheng Y, Singh SR, Wei Y (2012) Hypoxia, stem cells and bone tumor. Cancer Lett 2:129–136

    Google Scholar 

  14. Myszczyszyn A, Czarnecka AM, Matak D, Szymanski L, Lian F, Kornakiewicz A, Bartnik E, Kukwa W, Kieda C, Szczylik C (2015) The role of hypoxia and cancer stem cells in renal cell carcinoma pathogenesis. Stem Cell Rev Rep 11:919–943

    Article  CAS  Google Scholar 

  15. Heddleston JM, Li Z, Lathia JD, Bao S, Hjelmeland AB, Rich JN (2010) Hypoxia inducible factors in cancer stem cells. Br J Cancer 102:789–795

    Article  CAS  Google Scholar 

  16. Eun K, Ham SW, Kim H (2017) Cancer stem cell heterogeneity: origin and new perspectives on CSC targeting. BMB Rep 3:117–125

    Article  Google Scholar 

  17. Bristow RG, Hill RP (2008) Hypoxia and metabolism: hypoxia, DNA repair and genetic instability. Nat Rev Cancer 8:180–192

    Article  CAS  Google Scholar 

  18. Denko NC. Hypoxia (2008) HIF 1α and glucose metabolism in the solid tumour. Nat Rev Cancer 8:705–713

    Article  CAS  Google Scholar 

  19. Hsu PP, Sabtini DM (2008) Cancer cell metabolism: Warburg and beyond. Cell 134:703–707

    Article  CAS  Google Scholar 

  20. Shervington A, Lu C, Patel R, Shervington L (2009) Telomerase downregulation in cancer brain stem cell. Mol Cell Biochem 331:153–159

    Article  CAS  Google Scholar 

  21. Collins AT, Berry PA, Hyde C, Stower MJ, Maitland NJ (2018) Prospective identification of tumorigenic prostate cancer stem cells. Cancer Res 65:10946–10951

    Article  Google Scholar 

  22. Yin S, Li J, Hu C, Chen X, Yao M, Yan M, Jiang G, Ge C, Xie H, Wan D, Yang S, Zheng S, Gu J (2007) CD133 positive hepatocellular carcinoma cells possess high capacity for tumorigenicity. Int J Cancer 120:1444–1450

    Article  CAS  Google Scholar 

  23. Hsieh CH, Lee CH, Liang JA, Yu CY, Shyu WC (2010) Cycling hypoxia increases U87 glioma cell radioresistance via ROS induced higher and long-term HIF-1 signal transduction activity. Oncol Rep 24(6):1629–1636

    Article  CAS  Google Scholar 

  24. Kato Y, Yashiro M, Fuyuhiro Y et al (2011) Effects of acute and chronic hypoxia on the radio sensitivity of gastric and esophageal cancer cells. Anticancer Res 31(10):3369–3375

    CAS  PubMed  Google Scholar 

  25. Chaplin DJ, Durand RE, Olive PL (1986) Acute hypoxia in tumors: implications for modifiers of radiation effects. Int J Radiat Oncol Biol Phys 12(8):1279–1282

    Article  CAS  Google Scholar 

  26. Moore N, Lyle S (2011) Quiescent, slow-cycling stem cell populations in cancer: a review of the evidence and discussion of significance. J Oncol 1–11

    Article  Google Scholar 

  27. Chen W, Dong J, Haiech J, Kilhoffer M-C, Zeniou M (2016) Cancer stem cell quiescence and plasticity as major challenges in cancer therapy. Stem Cells Int 16:1–16

    CAS  Google Scholar 

  28. Mansfield KD, Guzy RD, Pan Y, Young RM, Cash TP, Schumacker PT, Simon MC (2005) Mitochondrial dysfunction resulting from loss of cytochrome c impairs cellular oxygen sensing and hypoxic HIF-alpha activation. Cell Metab 6:393–399

    Article  Google Scholar 

  29. Brunelle JK, Bell EL, Quesada NM, Vercauteren K, Tiranti V, Zeviani M, Scarpulla RC, Chandel NS (2005) Oxygen sensing requires mitochondrial ROS but not oxidative phosphorylation. Cell Metab 1:409–414

    Article  CAS  Google Scholar 

  30. Rogatzki MJ, Ferguson BS, Goodwin ML, Gladden LB (2015) Lactate is always the end product of glycolysis. Front Neurosci 9:22

    Article  Google Scholar 

  31. Deshmukh A, Deshpande K, Arfuso F, Newsholme P, Dharmarajan A (2016) Cancer stem cell metabolism: a potential target for cancer therapy. Mol Cancer 15:1–10

    Article  Google Scholar 

  32. Carlotta G, Anna R, Paolo P, Rosario R (2008) Ca2+ signaling, mitochondria and cell death. Curr Mol Med 8:119–130

    Article  Google Scholar 

  33. Wang S-S, Jiang J, Liang X-H, Tang Y-L (2015) Links between cancer stem cells and epithelial–mesenchymal transition. OncoTargets Ther 8:2973–2980

    CAS  Google Scholar 

  34. Müller M, Hermann PC, Liebau S, Weidgang C, Seufferlein T, Kleger A, Perkhofer L (2016) The role of pluripotency factors to drive stemness in gastrointestinal cancer. Stem Cell Res 16:349–357

    Article  Google Scholar 

  35. Yamagata K, Izawa Y, Onodera D, Tagami M (2018) Chlorogenic acid regulates apoptosis and stem cell marker-related gene expression in A549 human lung cancer cells. Mol Cell Biochem 441:9–19

    Article  CAS  Google Scholar 

  36. Wang L, Guo H, Yang L, Dong L, Lin C, Zhang J, Lin P, Wang X (2013) Morusin inhibits human cervical cancer stem cell growth and migration through attenuation of NF-κB activity and apoptosis induction. Mol Cell Biochem 379:7–18

    Article  CAS  Google Scholar 

  37. Wang L, Mezencev R, Bowen NJ, Matyunina LV, McDonald JF (2012) Isolation and characterization of stem-like cells from a human ovarian cancer cell line. Mol Cell Biochem 363:257–268

    Article  CAS  Google Scholar 

  38. Orian-Rousseau V (2010) CD44, a therapeutic target for metastasising tumours. Eur J Cancer 46:1271–1277

    Article  CAS  Google Scholar 

  39. Takaishi S, Okumura T, Tu S, Wang SS, Shibata W, Vigneshwaran R, Gordon SA, Shimada Y, Wang TC (2009) Identification of gastric cancer stem cells using the cell surface marker CD44. Stem Cells 27:1006–1020

    Article  CAS  Google Scholar 

  40. Scheel C, Weinberg RA (2012) Cancer stem cells and epithelial-mesenchymal transition: concepts and molecular links. Semin Cancer Biol 22:396–403

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported in the name of research fellowship to first author from CTDT (Centre for Technology development and Transfer)—Anna university, Chennai, Tamil Nadu, India. We acknowledge the financial support from MHRDCEMA F.NO-5-3/2015-TS VII and BUILDER program BT/PR12153/INF/22/200/2014 to AD.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anuradha Dhanasekaran.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest exist.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koka, P., Mundre, R.S., Rangarajan, R. et al. Uncoupling Warburg effect and stemness in CD133+ve cancer stem cells from Saos-2 (osteosarcoma) cell line under hypoxia. Mol Biol Rep 45, 1653–1662 (2018). https://doi.org/10.1007/s11033-018-4309-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-018-4309-2

Keywords

Navigation