Skip to main content
Log in

Multi-spectroscopic studies on the interaction between traditional Chinese herb, helicid with pepsin

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Study on the binding properties of helicid by pepsin systematically using multi-spectroscopic techniques and molecular docking method, and these interactions comprise biological recognition at molecular level and backbone of biological significance in medicine concerned with the uses, effects, and modes of action of drugs. We investigated the mechanism of interaction between helicid and pepsin by using various spectroscopic techniques viz., fluorescence spectra, UV–Vis absorption spectra, circular dichroism (CD), 3D spectra, synchronous fluorescence spectra and molecular docking methods. The quenching mechanism associated with the helicid–pepsin interaction was determined by performing fluorescence measurements at different temperatures. From the experimental results show that helicid quenched the fluorescence intensity of pepsin via a combination of static and dynamic quenching process. The binding constants (Ka) at three temperatures (288, 298, and 308 K) were 7.940 × 107, 2.082 × 105 and 3.199 × 105 L mol−1, respectively, and the number of binding sites (n) were 1.44, 1.14, and 1.18, respectively. The n value is close to unity, which means that there is only one independent class of binding site on pepsin for helicid. Thermodynamic parameters at 298 K were calculated as follows: ΔHo (− 83.85 kJ mol−1), ΔGo (− 33.279 kJ mol−1), and ΔSo (− 169.72 J K−1 mol−1). Based on thermodynamic analysis, the interaction of helicid with pepsin is driven by enthalpy, and Van der Waals’ forces and hydrogen bonds are the main forces between helicid and pepsin. A molecular docking study further confirmed the binding mode obtained by the experimental studies. The conformational changes in the structure of pepsin was confirmed by 3D fluorescence spectra and circular dichroism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Zhou X, Zhao TR, Nan GH, Li JY (1987) Influences of helicid on metabolism of four amino acids in the brain and synaptosomes in mice. Acta Pharmacol Sin 8:393–396

    CAS  Google Scholar 

  2. Fan R, Gan L, Liu M, Zhu D, Chen L, Xu Z, Hao Z, Chen L (2011) An interaction of helicid with liposome biomembrane. Appl Surf Sci 257:2102–2106

    Article  CAS  Google Scholar 

  3. Yi W, Cao RH, Wen H, Yan Q, Zhou BH, Wan YQ, Ma L, Song HC (2008) Synthesis and biological evaluation of helicid analogues as mushroom tyrosinase inhibitors. Bioorg Med Chem Lett 18:6490–6493

    Article  CAS  Google Scholar 

  4. Liu GY, Ma SC, Zhang YM, Xu JM, Lin RC (2005) Study on chemical constituents in seeds of Helicia nilagirica (II). China J Chin Mat Med 30:830–832

    CAS  Google Scholar 

  5. Ha JH, Lee DU, Lee JT, Kim JS, Yong CS, Kim JA, Ha JS, Huh K (2000) 4-Hydroxybenzaldehyde from Gastrodia elata B1. is active in the antioxidation and GABAergic neuromodulation of the rat brain. J Ethnopharmacol 73:329–333

    Article  CAS  Google Scholar 

  6. Liu P, Li J, Na DQ, Geng JM, Li S (2002) Neurobehavioral effects of helicid on Wistar rat’s offspring. Zhongcaoyao 33:238–242

    CAS  Google Scholar 

  7. Liu G, Wang G, Ma S, Lin R (2004) General situation of research on active ingredients of medicinal plants in Longan. Chin Tradit Herb Drugs 35:593–595

    CAS  Google Scholar 

  8. Lan S, Li J, Xiong S, Wan C, Lv M (2007) Helicia tablets and sleep health conducting to treat patients with insomnia. Chin J New Drugs Clin Rem 26:604–606

    Google Scholar 

  9. Lan SZ, Li J, Xiong SC, Wan C, Lv MZ (2007) Helicia tablets and sleep health conducting to treat patients with insomnia. Chin J New Drugs Clin Rem 26:604–606

    Google Scholar 

  10. Wen H, Lin C, Que L, Ge H, Ma L, Cao R, Wan Y, Peng W, Wang Z, Song H (2008) Synthesis and biological evaluation of helicid analogues as novel acetylcholinesterase inhibitors. Eur J Med Chem 43:166–173

    Article  CAS  Google Scholar 

  11. Yue Y, Liu J, Liu R, Dong Q, Fan J (2014) Binding of helicid to human serum albumin: A hybrid spectroscopic approach and conformational study. Spectrochim Acta Part A 124:46–51

    Article  CAS  Google Scholar 

  12. Maeda K, Fukuda M, Griffith CE, Finkel LJ, Hamilton TA, Bulengo-Ransby SM (1996) Mechanism of its depigmenting action in human melanocyte culture. J Pharmacol Exp Ther 276:765–769

    CAS  PubMed  Google Scholar 

  13. Wang R, Xie Y, Zhang Y, Kang X, Wang X, Ge B, Chang J (2013) Comparative study of the binding of pepsin to four alkaloids by spectrofluorimetry. Spectrochim Acta A 108:62–74

    Article  Google Scholar 

  14. Zhang H, Cao J, Fei Z, Wang Y (2012) Investigation on the interaction behavior between bisphenol A and pepsin by spectral and docking studies. J Mol Struct 1021:34–39

    Article  CAS  Google Scholar 

  15. Gole A, Dash C, Rao M, Sastry M (2000) Encapsulation and biocatalytic activity of the enzyme pepsin in fatty lipid films by selective electrostatic interactions. Chem Commun 4:297–298

    Article  Google Scholar 

  16. Zeng HJ, Yang R, Liang H, Qu LB (2015) Molecular interactions of flavonoids to pepsin: insights from spectroscopic and molecular docking studies. Spectrochim Acta A 151:576–590

    Article  CAS  Google Scholar 

  17. Yue Y, Zhao S, Liu J, Yan X, Sun Y (2017) Probing the binding properties of dicyandiamide with pepsin by spectroscopy and docking methods. Chemosphere 185:1056–1062

    Article  CAS  Google Scholar 

  18. Jin KS, Rho Y, Kim J, Kim H, Kim IJ, Ree M (2008) Synchrotron small-angle Xray scattering studies of the structure of porcine pepsin under various pH conditions. J Phys Chem B 112:15821–15827

    Article  CAS  Google Scholar 

  19. Van deWeert M, Stella L (2011) Fluorescence quenching and ligand binding: a critical discussion of a popular methodology. J Mol Struct 998(1):144–150

    Google Scholar 

  20. Omidvar Z, Asoodeh A, Chamani J (2013) Studies on the antagonistic behavior between cyclophosphamide hydrochloride and aspirin with human serum albumin: time-resolved fluorescence spectroscopy and isothermal titration calorimetry. J Solut Chem 42:1005–1017

    Article  CAS  Google Scholar 

  21. Wu Z, Shen L, Han Q, Lu J, Tang H, Xu X, Xu H, Huang F, Xie J, He Z, Zeng Z, Hu Z (2017) Mechanism and nature of inhibition of trypsin by Ligupurpuroside A, a ku-ding tea extract, studied by spectroscopic and docking methods. Food Biophys 12:78–87

    Article  Google Scholar 

  22. Shen L, Xu H, Huang F, Li Y, Xiao H, Yang Z, Hu Z, He Z, Zeng Z, Li Y (2014) Investigation on interaction between Ligupurpuroside A and pepsin by spectroscopic and docking methods. Spectrochim Acta Part A 135:256–263

    Article  Google Scholar 

  23. Ying M, Huang FW, Ye HD, Xu H, Shen LL, Huan TW, Huang ST, Xie JF, Tian SL, Hua ZL, He ZD, Lu J, Zhou K (2015) Study on interaction between curcumin and pepsin by spectroscopic and docking methods. Int J Biol Macromol 79:201–208

    Article  CAS  Google Scholar 

  24. Lakowicz JR, Weber G (1973) Quenching of fluorescence by oxygen. A probe for structural fluctuations in macromolecules. Biochemistry 12:1461–4170

    Google Scholar 

  25. Wang Q, Huang CR, Jiang M, Zhu YY, Wang J, Chen J, Shi JH (2016) Binding interaction of atorvastatin with bovine serum albumin: spectroscopic methods and molecular docking. Spectrochim Acta A 156:155–163

    Article  CAS  Google Scholar 

  26. Zhou Q, Xiang J, Tang Y, Liao J, Yu C, Zhang H, Li L, Yang Y, Xu G (2008) Investigation on the interaction between a heterocyclic aminal derivative, SBDC, and human serum albumin. Colloids Surf B 61:75–80

    Article  CAS  Google Scholar 

  27. Gerbanowski A, Malabat C, Rabiller C, Gueguen J (1999) Grafting of aliphatic and aromatic probes on rapeseed 2S and 12S proteins: influence on their structural and physicochemical properties. J Agric Food Chem 47:5218–5226

    Article  CAS  Google Scholar 

  28. Ward LD (1985) Measurement of ligand binding to proteins by fluorescence spectroscopy. Methods Enzymol 117:400–414

    Article  CAS  Google Scholar 

  29. Lakowicz JR (2006) Principles of fluorescence spectroscopy, third edn. Springer, New York

    Book  Google Scholar 

  30. Roy AS, Tripathy DR, Ghosh AK, Dasgupta S (2012) An alternate mode of binding of the polyphenol quercetin with serum albumins when complexed with Cu(II). J Lumin 132:2943–2951

    Article  Google Scholar 

  31. Hossein MA, Dolatabadi JEN, Dehghan P, Vahid PA, Barzegar A (2017) Multi-spectroscopic and molecular modeling studies of bovine serum albumin interaction with sodium acetate food additive. Food Chem 228:265–269

    Article  Google Scholar 

  32. Xiang G, Tong C, Lin H (2007) Nitroaniline isomers interaction with bovine serum albumin and toxicological implications. J Fluoresc 17:512–521

    Article  CAS  Google Scholar 

  33. Zhang YZ, Dai J, Zhang XP, Yang X, Liu Y (2008) Studies of the interaction between sudan I and bovine serum albumin by spectroscopic methods. J Mol Struct 888:152–159

    Article  CAS  Google Scholar 

  34. Rashidipour S, Naeeminejad S, Chamani J (2016) Study of the interaction between DNP and DIDS with human hemoglobin as binary and ternary systems: spectroscopic and molecular modeling investigation. J Biomol Struct Dyn 34:57–77

    Article  Google Scholar 

  35. Moosavi-Movahedi AA, Chamani J, Gharanfoli M, Hakimelahi GH (2004) Differential scanning calorimetric study of the molten globule state of cytochrome c induced by sodium n-dodecyl sulfate. Thermochim Acta 409:137–144

    Article  CAS  Google Scholar 

  36. Deepti S, Himanshu O, Mallika P, Bhawna S, Navneet S, Anju S, Rita K, Rakesh KS (2016) Spectroscopic and molecular modelling studies of binding mechanism of metformin with bovine serum albumin. J Mol Struct 1118:267–274

    Article  Google Scholar 

  37. Zhu SZ, Liu Y (2012) Spectroscopic analyses on interaction of Naphazoline hydrochloride with bovine serum albumin. Spectrochim Acta A 98:142–147

    Article  CAS  Google Scholar 

  38. Nascimento GNLD, Montalvao EV, Aversi-Ferreira TA (2012) Study of the pepsin enzymatic activity in in-vitro dissolution test of bromazepam tablets by UV/VIS spectrophotometry. J Appl Pharm Sci 2(10):11–15

    Google Scholar 

  39. Marouzia S, Rada AS, Beigolib S, Baghaeea PT, Darbana RA, Chamania J (2017) Study on effect of lomefloxacin on human holo-transferrin in the presence of essential and nonessential amino acids: spectroscopic and molecular modeling approaches. Int J Biol Macro 97:688–699

    Article  Google Scholar 

  40. Sułkowska A (2002) Interaction of drugs with bovine and human serum albumin. J Mol Struct 614:227–232

    Article  Google Scholar 

  41. Liu R, Cheng Z, Jiang X (2014) Comparative studies on the interactions of dihydroartemisinin and artemisinin with bovine serum albumin using spectroscopic methods. Luminescence 29:1033–1046

    Article  CAS  Google Scholar 

  42. Zhang LN, Wu FY, Liu AH (2011) Study of the interaction between 2, 5-di-[2-(4-hydroxy-phenyl)ethylene]-terephthalonitril and bovine serum albumin by fluorescence spectroscopy. Spectrochim Acta A 79:97–103

    Article  CAS  Google Scholar 

  43. Lloyd JBF (1971) Nature and evidential value of luminescence of automobile engine oils and related materials. 1. Synchronous excitation of fluorescence emission. J Forensic Sci Soc 11:83–94

    Article  CAS  Google Scholar 

  44. Abert WC, Gregory WM, Allan GS (1993) The binding interaction of coomassie blue with proteins. Anal Biochem 213:407–413

    Article  Google Scholar 

  45. Fan JC, Chen X, Wang Y, Fan CP, Shang ZC (2006) Binding interactions of pefloxacin mesylate with bovine lactoferrin and human serum albumin. J Zhejiang Univ Sci B 7:452–458

    Article  CAS  Google Scholar 

  46. Hu YJ, Liu Y, Wang JB, Xiao XH, Qu SS (2004) Study of the interaction between monoammonium glycyrrhizinate and bovine serum albumin. J Pharm Biomed Anal 36:915–919

    Article  CAS  Google Scholar 

  47. Meti MD, Nandibewoor ST, Joshi SD, More UA, Chimatadar SA (2016) Binding interaction and conformational changes of human serum albumin with ranitidine studied by spectroscopic and timeresolved fluorescence methods. J Iran Chem Soc 13:1325–1338

    Article  CAS  Google Scholar 

  48. Chamani J (2006) Comparison of the conformational stability of the non-native α-helical intermediate of thiol-modified β-lactoglobulin upon interaction with sodium n-alkyl sulfates at two different pH. J Colloid Interfaces Sci 299:636–646

    Article  CAS  Google Scholar 

  49. Azimi O, Emami Z, Salari H, Chamani J (2011) Probing the interaction of human serum albumin with norfloxacin in the presence of high-frequency electromagnetic fields: fluorescence spectroscopy and circular dichroism investigations. Molecules 16:9792–9818

    Article  CAS  Google Scholar 

  50. Shen GF, Liu TT, Wang Q, Jiang M, Shi JH (2015) Spectroscopic and molecular docking studies of binding interaction of gefitinib, lapatinib and sunitinib with bovine serum albumin (BSA). J Photochem Photobiol B 153:380–390

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China [Grant Numbers 31540012, 31470431, and 31670360], Guangdong Natural Science Foundation for Major cultivation project [Grant Number 2014A030308017], Shenzhen Science and Technology Innovation Committee Grants [Grant Numbers JSGG20160229120821300, JCYJ20150625103526744, CXZZ20150529165110750, JSGG20130411160539208, JCYJ20170302144535707, KQCX20140522111508785, CXZZ20150601110000604, and ZDSYS201506031617582], and Shenzhen special funds for Bio-industry development [Grant Number NYSW20140327010012].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong Xu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Research involving human and animal rights

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meti, M.D., Xu, Y., Xie, J. et al. Multi-spectroscopic studies on the interaction between traditional Chinese herb, helicid with pepsin. Mol Biol Rep 45, 1637–1646 (2018). https://doi.org/10.1007/s11033-018-4306-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-018-4306-5

Keywords

Navigation