Skip to main content
Log in

Genome survey sequencing of red swamp crayfish Procambarus clarkii

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Red swamp crayfish, Procambarus clarkii, presently is an important aquatic commercial species in China. The crayfish is a hot area of research focus, and its genetic improvement is quite urgent for the crayfish aquaculture in China. However, the knowledge of its genomic landscape is limited. In this study, a survey of P. clarkii genome was investigated based on Illumina’s Solexa sequencing platform. Meanwhile, its genome size was estimated using flow cytometry. Interestingly, the genome size estimated is about 8.50 Gb by flow cytometry and 1.86 Gb with genome survey sequencing. Based on the assembled genome sequences, total of 136,962 genes and 152,268 exons were predicted, and the predicted genes ranged from 150 to 12,807 bp in length. The survey sequences could help accelerate the progress of gene discovery involved in genetic diversity and evolutionary analysis, even though it could not successfully applied for estimation of P. clarkii genome size.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Yue GH, Li J, Bai Z, Wang CM, Feng F (2010) Genetic diversity and population structure of the invasive alien red swamp crayfish. Biol Invasions 12:2697–2706

    Article  Google Scholar 

  2. Li YH, Guo XW, Cao XJ et al (2012) Population genetic structure and post-establishment dispersal patterns of the red swamp crayfish Procambarus clarkii in China. PLoS ONE 7(7):e40652. https://doi.org/10.1371/journal.pone.0040652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Li YH, Guo XW, Chen LP et al (2015) Inferring invasion history of red swamp crayfish (Procambarus clarkii) in China from mitochondrial control region and nuclear intron sequences. Int J Mol Sci 16(7):14623–14639. https://doi.org/10.3390/ijms160714623

    Article  PubMed  PubMed Central  Google Scholar 

  4. Jiang HC, Xing ZJ, Lu W et al (2014) Transcriptome analysis of red swamp crawfish Procambarus clarkii reveals genes involved in gonadal development. PLoS ONE 9(8):e105122. https://doi.org/10.1371/journal.pone.0105122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Huner JV (1988) Procambarus in North America and elsewhere. In: Holdich DM, Lowery RS (eds) Freshwater crayfish: biology, management and exploitation. Timber Press, Portland, pp. 239–261

    Google Scholar 

  6. Zhu ZY, Yue GH (2008) Eleven polymorphic microsatellites isolated from red swamp crayfish, Procambarus clarkii. Mol Ecol Resour 8:796–798

    Article  CAS  PubMed  Google Scholar 

  7. Shen HS, Hu YC, Ma YC et al (2014) In-Depth transcriptome analysis of the red swamp crayfish Procambarus clarkii. PLoS ONE 9(10):e110548. https://doi.org/10.1371/journal.pone.0110548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Alfei L, Cavallo D, Eleuteri P et al (1996) Nuclear DNA content in Salmo fibreni in Lake Posta Fibreno, Italy. J Fish Biol 48(6):1051–1058

    CAS  Google Scholar 

  9. Fafanđel M, Bihari N, Smodlaka M, Ravlic S (2008) Hemocytes/coelomocytes DNA content in five marine invertebrates: cell cycles and genome sizes. Biologia 63(5):730–736

    Article  Google Scholar 

  10. Juchno D, Lackowska B, Boron A, Kilarski W (2010) DNA content of hepatocyte and erythrocyte nuclei of the spined loach (Cobitis tania L.) and its polyploidy froms. Fish Physiol Biochem 36(3):523–529

    Article  CAS  PubMed  Google Scholar 

  11. Liu L, Cui ZX, Song CW et al (2016) Flow cytometric analysis of DNA content for four commercially important crabs in china. Acta Oceanol Sin 35(6):7–11

    Article  Google Scholar 

  12. Lu M, An H, Li L (2016) Genome survey sequencing for the characterization of the genetic background of Rosa roxburghii Tratt and leaf ascorbate metabolism genes. PLoS ONE 11(2):e0147530. https://doi.org/10.1371/journal.pone.0147530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Yi S, Li Y, Shi L, Zhang L et al (2018) Characterization of Population Genetic Structure of red swamp crayfish, Procambarus clarkii, in China. Sci Rep. https://doi.org/10.1038/s41598-018-23986-z

    Article  PubMed  PubMed Central  Google Scholar 

  14. Dai M, Thompson RC, Maher C et al (2010) NGSQC: cross-platform quality analysis pipeline for deep sequencing data. BMC Genom. https://doi.org/10.1186/1471-2164-11-S4-S7

    Article  Google Scholar 

  15. Luo RB, Liu BH, Xie YL et al (2012) SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler. GigaScience 1(1):18

    Article  PubMed  PubMed Central  Google Scholar 

  16. Zhang GF, Fang XD, Guo XM et al (2012) The oyster genome reveals stress adaptation and complexity of shell formation. Nature 490(7418):49–54

    Article  CAS  PubMed  Google Scholar 

  17. Kim EB, Fang X, Fushan AA et al (2011) Genome sequencing reveals insights into physiology and longevity of the naked mole rat. Nature 479(7372):223–227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Marcais G, Kingsford C (2011) A fast, lock-free approach for efficient parallel counting of occurrences of k-mers. Bioinformatics 27:764–770

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Liu BH, Shi YJ, Yuan JY et al (2013) Estimation of genomic characteristics by analyzing k-mer frequency in de novo genome projects. Quant Biol 35(s1–3):62–67

    Google Scholar 

  20. Cimino MC (1974) The nuclear DNA content of diploid and triploid Poeciliopsis and other poeciliid fishes with reference to the evolution of unisexual forms. Chromosoma 47(3):297–307

    Article  CAS  PubMed  Google Scholar 

  21. Jimenez AG, Kinsey ST, Dillaman RM, Kapraun DF (2010) Nuclear DNA content variation associated with muscle fiber hypertrophic growth in decapod crustaceans. Genome 53(3):161–171

    Article  CAS  PubMed  Google Scholar 

  22. Huang H, Tong Y, Zhang QJ, Gao LZ (2013) Genome size variation among and within camellia species by using flow cytometric analysis. PLoS ONE 8(5):e64981

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Doležel J, Bartoš J, Voglmayr H, Greilhuber J (2003) Nuclear DNA content and genome size of trout and human. Cytometry A 51:127–128

    Article  PubMed  Google Scholar 

  24. Doležel J, Bartoš J (2005) Plant DNA flow cytometry and estimation of nuclear genome size. Ann Bot 95:99–110

    Article  PubMed  PubMed Central  Google Scholar 

  25. Excoffier L, Laval G, Schneider S (2005) Arlequin (version 3.0): an integrated software package for population genetics data analysis. Evol Bioinform Online 1:47–50

    Article  CAS  Google Scholar 

  26. Majoros WH, Pertea M, Salzberg SL (2004) TigrScan and GlimmerHMM: two open-source ab initio eukaryotic gene-finders. Bioinformatics 20:2878–2879

    Article  CAS  PubMed  Google Scholar 

  27. Wright S (1978) Evolution and the genetics of populations, v.4: variability within and among natural populations. The University of Chicago Press, Chicago

    Google Scholar 

  28. Zhu DM, Song W, Yang K et al (2012) Flow cytometric determination of genome size for eight commercially important fish species in China. In Vitro Cell Dev 48(8):507–517

    Article  Google Scholar 

  29. Filipiak M, Tylko G, Kilarski W (2012) Flow cytometric determination of genome size in European sunbleak Leucaspius delieatus (Heckel 1838). Fish Physiol Biochem 43(2):355–362

    Article  Google Scholar 

  30. Bachmann K, Rheinsmith EL (1973) Nuclear DNA amounts in Pacific Crustacea. Chromosoma 43(3):225–236

    Article  CAS  PubMed  Google Scholar 

  31. Ding J, Chang YQ, Wang ZC et al (2003) Analysis of DNA relative content and cell cycle of different tissues of Crassostrea gigas. Adv Mar Sci 21(2):203–208

    Google Scholar 

  32. Ding J, Chang YQ, Xing RL, Song J, Fu Q (2003) Analysis of cell cycle and nuclear DNA relative contents in different tissues using flow cytometry. J Dalian Fish U 18(3):200–203

    CAS  Google Scholar 

  33. Liu HY, Yang S, Yan HW et al (2016) Chromosome karyotype and nuclear DNA content of mantis shrimp Oratosquilla oratoria. J Dalian Ocean U 31(1):1–6

    Google Scholar 

  34. Cavallini A, Natali L (1991) Intraspecific variation of nuclear DNA content in plant species. Caryologia 44(1):93–107

    Article  CAS  Google Scholar 

  35. Aird D, Ross MG, Chen WS et al (2011) Analyzing and minimizing PCR amplification bias in Illumina sequencing libraries. Genome Biol 12:R18. https://doi.org/10.1186/gb-2011-12-2-r18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kajitani R, Toshimoto K, Noguchi H et al (2014) Efficient de novo assembly of highly heterozygous genomes from whole-genome shotgun short reads. Genome Res 24:1384–1395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Claros MG, Bautista R, Guerrero-Fernández D et al (2012) Why assembling plant genome sequences is so challenging. Biology 1:439–459. https://doi.org/10.3390/biology1020439

    Article  PubMed  PubMed Central  Google Scholar 

  38. Hamilton JP, Buell CR (2012) Advances in plant genome sequencing. Plant J 70:177–190

    Article  CAS  PubMed  Google Scholar 

  39. Huang Y, Li T, Jin M, Yin S, Hui KM, Ren Q (2017) Newly identified PcToll4 regulates antimicrobial peptide expression in intestine of red swamp crayfish Procambarus clarkii. Gene 610:140–147

    Article  CAS  PubMed  Google Scholar 

  40. Yi S, Li Y, Shi L, Zhang L (2017) Novel insights into antiviral gene regulation of red swamp crayfish, Procambarus clarkii, infected with white spot syndrome virus. Genes 8(11):320

    Article  PubMed Central  Google Scholar 

  41. Dearborn RE, Jr Szaro BG, Lnenicka GA (1999) Cloning and characterization of AASPs: novel axon-associated SH3 binding-like proteins. J Neurobiol 38(4):581–594

    Article  CAS  PubMed  Google Scholar 

  42. Jiang B, Lou Q, Wu Z et al (2011) Retrotransposon- and microsatellite sequence-associated genomic changes in early generations of a newly synthesized allotetraploid Cucumis × hytivus Chen & Kirkbride. Plant Mol Biol https://doi.org/10.1007/s11103-011-9804-y

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 31501858) and the Fundamental Research Funds for the Central Universities (No. 2662016QD009). The study was also financed by the 2nd batch of Modern Agroindustry Technology Research System of Hubei Province. We thank Miss Xiaoran Song and Ruijing Gen, College of fisheries, Huazhong Agriculture University, for their assistance with technique support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanhe Li.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest.

Ethical approval

This study was conducted with ethical approval by the Institutional Animal Care and Use Committee (IACUC) of Huazhong Agricultural University (Wuhan, China) according to the national and international guidelines.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, L., Yi, S. & Li, Y. Genome survey sequencing of red swamp crayfish Procambarus clarkii. Mol Biol Rep 45, 799–806 (2018). https://doi.org/10.1007/s11033-018-4219-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-018-4219-3

Keywords

Navigation