Skip to main content
Log in

Regulation of nuclear factor of activated T cells (NFAT) and downstream myogenic proteins during dehydration in the African clawed frog

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Xenopus laevis, otherwise known as the African clawed frog, undergoes natural dehydration of up to 30% of its total body water during the dry season in sub-Saharan Africa. To survive under these conditions, a variety of physiological and biochemical changes take place in X. laevis. We were interested in understanding the role that the calcineurin-NFAT pathway plays during dehydration stress response in the skeletal muscles of X. laevis. Immunoblotting was performed to characterize the protein levels of NFATc1-4, calcium signalling proteins, in addition to myogenic proteins (MyoD, MyoG, myomaker). In addition, DNA–protein interaction ELISAs were used to assess the binding of NFATs to their consensus binding sequence, and to identify the effect of urea on NFAT-binding. Our results showed that NFATc1 and c4 protein levels decreased during dehydration, and there were no changes in NFATc2, c3, and calcium signalling proteins. However, MyoG and myomaker both showed increases in protein levels during dehydration, thus indicating that the late myogenic program involving myoblast differentiation, but not satellite cell activation and myoblast proliferation, could be involved in preserving the skeletal muscle of X. laevis during dehydration. In addition, we observed that urea seems to reduce NFATc3-binding to DNA during control, but not during dehydration, possibly indicating that NFATc3 is protected from the denaturing effects of urea as it accumulates during dehydration. These findings expand upon our knowledge of adaptive responses to dehydration, and they identify specific protein targets that could be used to protect the skeletal muscle from damage during stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Tinsley RC, Kobel HR (1996) The biology of Xenopus. Zoological Society of London, London, 317–328

    Google Scholar 

  2. Alexander SS, Bellerby CW (1938) Experimental studies on the sexual cycle of the South African clawed toad (Xenopus laevis). J Exp Biol 15:74–81

    Google Scholar 

  3. Romspert AP (1976) Osmoregulation of the african clawed frog. Xenopus laevis, in hypersaline media. Comp Biochem Physiol Part A Physiol 54:207–210. https://doi.org/10.1016/S0300-9629(76)80098-9

    Article  CAS  Google Scholar 

  4. Grundy JE, Storey KB (1994) Urea and salt effects on enzymes from estivating and non-estivating amphibians. Mol Cell Biochem 131:9–17. https://doi.org/10.1007/BF01075719

    Article  CAS  PubMed  Google Scholar 

  5. Balinsky JB, Choritz EL, Coe CGL, van der Schans GS (1967) Amino acid metabolism and urea synthesis in naturally aestivating Xenopus laevis. Comp Biochem Physiol 22:59–68. https://doi.org/10.1016/0010-406X(67)90166-1

    Article  CAS  PubMed  Google Scholar 

  6. Balinsky JB, Cragg MM, Baldwin E (1961) The adaptation of amphibian waste nitrogen excretion to dehydration. Comp Biochem Physiol 3:236–244. https://doi.org/10.1016/0010-406X(61)90009-3

    Article  CAS  PubMed  Google Scholar 

  7. Janssens PA (1964) Urea production and transaminase activity in Xenopus laevis Daudin. Comp Biochem Physiol 13:217–224. https://doi.org/10.1016/0010-406X(64)90118-5

    Article  CAS  PubMed  Google Scholar 

  8. Seiter P, Schultheiss H, Hanke W (1978) Osmotic stress and excretion of ammonia and urea in Xenopus laevis. Comp Biochem Physiol Part A Physiol 61:571–576. https://doi.org/10.1016/0300-9629(78)90130-5

    Article  Google Scholar 

  9. Malik AI, Storey KB (2009) Activation of antioxidant defense during dehydration stress in the African clawed frog. Gene 442:99–107. https://doi.org/10.1016/j.gene.2009.04.007

    Article  CAS  PubMed  Google Scholar 

  10. Malik AI, Storey KB (2009) Activation of extracellular signal-regulated kinases during dehydration in the African clawed frog, Xenopus laevis. J Exp Biol 212:2595–2603. https://doi.org/10.1242/jeb.030627

    Article  CAS  PubMed  Google Scholar 

  11. Malik AI, Storey KB (2011) Transcriptional regulation of antioxidant enzymes by FoxO1 under dehydration stress. Gene 485:114–119. https://doi.org/10.1016/j.gene.2011.06.014

    Article  CAS  PubMed  Google Scholar 

  12. Flanagan WM, Corthésy B, Bram RJ, Crabtree GR (1991) Nuclear association of a T-cell transcription factor blocked by FK-506 and cyclosporin A. Nature 352:803–807

    Article  CAS  Google Scholar 

  13. Clipstone NA, Crabtree GR (1992) Identification of calcineurin as a key signalling enzyme in T-lymphocyte activation. Nature 355:717–719. https://doi.org/10.1038/357695a0

    Article  Google Scholar 

  14. Lin H, Sue YM, Chou Y et al (2010) Activation of a nuclear factor of activated T-lymphocyte-3 (NFAT3) by oxidative stress in carboplatin-mediated renal apoptosis. Br J Pharmacol 161:1661–1676. https://doi.org/10.1111/j.1476-5381.2010.00989.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Arron JR, Winslow MM, Polleri A et al (2006) NFAT dysregulation by increased dosage of DSCR1 and DYRK1A on chromosome 21. Nature 441:595–600. https://doi.org/10.1038/nature04678

    Article  CAS  PubMed  Google Scholar 

  16. Chang CP, Neilson JR, Bayle JH et al (2004) A field of myocardial-endocardial NFAT signaling underlies heart valve morphogenesis. Cell 118:649–663. https://doi.org/10.1016/j.cell.2004.08.010

    Article  CAS  PubMed  Google Scholar 

  17. Graef IA, Chen F, Chen L et al (2001) Signals transduced by Ca2+/calcineurin and NFATc3/c4 pattern the developing vasculature. Cell 105:863–875. https://doi.org/10.1016/S0092-8674(01)00396-8

    Article  CAS  PubMed  Google Scholar 

  18. Zhang Y, Storey KB (2015) Expression of nuclear factor of activated T cells (NFAT) and downstream muscle-specific proteins in ground squirrel skeletal and heart muscle during hibernation. Mol Cell Biochem 412:27–40. https://doi.org/10.1007/s11010-015-2605-x

    Article  CAS  PubMed  Google Scholar 

  19. Armand A-S, Bourajjaj M, Martínez-Martínez S et al (2008) Cooperative synergy between NFAT and MyoD regulates myogenin expression and myogenesis. J Biol Chem 283:29004–29010. https://doi.org/10.1074/jbc.M801297200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Nicolas N, Gallien CL, Chanoine C (1996) Analysis of MyoD, myogenin, and muscle-specific gene mRNAs in regenerating Xenopus skeletal muscle. Dev Dyn 207:60–68. doi: 10.1002/(SICI)1097-0177(199609)207:1<100::AID-AJA9>3.0.CO;2-M

    Article  CAS  Google Scholar 

  21. Boudjelida H, Muntz L (1987) Multinucleation during myogenesis of the myotome of Xenopus laevis: a qualitative study. Development 101:583–590

    CAS  PubMed  Google Scholar 

  22. Daughters RS, Chen Y, Slack JMW (2011) Origin of muscle satellite cells in the Xenopus embryo. Development 138:821–830. https://doi.org/10.1242/dev.056481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Hudson NJ, Franklin CE (2002) Effect of aestivation on muscle characteristics and locomotor performance in the Green-striped burrowing frog, Cyclorana alboguttata. J Comp Physiol B Biochem Syst Environ Physiol 172:177–182. https://doi.org/10.1007/s00360-001-0242-z

    Article  CAS  Google Scholar 

  24. Mantle BL, Hudson NJ, Harper GS et al (2009) Skeletal muscle atrophy occurs slowly and selectively during prolonged aestivation in Cyclorana alboguttata (Gunther 1867). J Exp Biol 212:3664–3672. https://doi.org/10.1242/jeb.033688

    Article  CAS  PubMed  Google Scholar 

  25. Zhang Y, Storey KB (2016) Regulation of gene expression by NFAT transcription factors in hibernating ground squirrels is dependent on the cellular environment. Cell Stress Chaperones 21:883–894. https://doi.org/10.1007/s12192-016-0713-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Millay DP, O’Rourke JR, Sutherland LB et al (2013) Myomaker is a membrane activator of myoblast fusion and muscle formation. Nature 499:301–305. https://doi.org/10.1038/nature12343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Rusnak F, Mertz P (2000) Calcineurin: form and function. Physiol Rev 80:1483–1521. https://doi.org/10.1172/JCI57909.date

    Article  CAS  PubMed  Google Scholar 

  28. Kretsinger R (1987) Calcium coordination and the calmodulin fold: divergent versus convergent evolution. Cold Spring Harb Symp Quant Biol 52:499–510

    Article  CAS  Google Scholar 

  29. Yang S, Klee CB (2000) Low affinity Ca2+-binding sites of calcineurin B mediate conformational changes in calcineurin A. Biochemistry 39:16147–16154

    Article  CAS  Google Scholar 

  30. Klee CB, Crouch TH, Krinks MH (1979) Calcineurin: a calcium- and calmodulin-binding protein of the nervous system. Proc Natl Acad Sci 76:6270–6273. https://doi.org/10.1073/pnas.76.12.6270

    Article  CAS  PubMed  Google Scholar 

  31. Burkard N (2005) Targeted proteolysis sustains calcineurin activation. Circulation 111:1045–1053. https://doi.org/10.1161/01.CIR.0000156458.80515.F7

    Article  CAS  PubMed  Google Scholar 

  32. Lee SH, Choi J, Kim H et al (2014) FK506 reduces calpain-regulated calcineurin activity in both the cytoplasm and the nucleus. Anat Cell Biol 47:91–100. https://doi.org/10.5115/acb.2014.47.2.91

    Article  PubMed  PubMed Central  Google Scholar 

  33. Shioda N, Moriguchi S, Shirasaki Y, Fukunaga K (2006) Generation of constitutively active calcineurin by calpain contributes to delayed neuronal death following mouse brain ischemia. J Neurochem 98:310–320. https://doi.org/10.1111/j.1471-4159.2006.03874.x

    Article  CAS  PubMed  Google Scholar 

  34. Wray S, Wilkie DR (1995) The relationship between plasma urea levels and some muscle trimethylamine levels in Xenopus laevis: a 31P and 14N nuclear magnetic resonance study. J Exp Biol 198:373–378

    CAS  PubMed  Google Scholar 

  35. Eaton SL, Roche SL, Llavero Hurtado M et al (2013) Total protein analysis as a reliable loading control for quantitative fluorescent western blotting. PLoS ONE 8:e72457. https://doi.org/10.1371/journal.pone.0072457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Hung H-F, Wang B-W, Chang H, Shyu K-G (2008) The molecular regulation of resistin expression in cultured vascular smooth muscle cells under hypoxia. J Hypertens 26:2349–2360. https://doi.org/10.1097/HJH.0b013e328311fa30

    Article  CAS  PubMed  Google Scholar 

  37. Rao A, Luo C, Hogan PG (1997) Transcription factors of the NFAT family: regulation and function. Annu Rev Immunol 15:707–747. https://doi.org/10.1146/annurev.immunol.15.1.707

    Article  CAS  PubMed  Google Scholar 

  38. Demonbreun AR, Lapidos KA, Heretis K et al (2010) Myoferlin regulation by NFAT in muscle injury, regeneration and repair. J Cell Sci 123:2413–2422. https://doi.org/10.1242/jcs.065375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Cotton CJJ, Harlow HJJ (2010) Avoidance of skeletal muscle atrophy in spontaneous and facultative hibernators. Physiol Biochem Zool 83:551–560. https://doi.org/10.1086/650471

    Article  PubMed  Google Scholar 

  40. Xu R, Andres-Mateos E, Mejias R et al (2013) Hibernating squirrel muscle activates the endurance exercise pathway despite prolonged immobilization. Exp Neurol 247:392–401. https://doi.org/10.1016/j.expneurol.2013.01.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Cotton CJ (2016) Skeletal muscle mass and composition during mammalian hibernation. J Exp Biol 219:226–234. https://doi.org/10.1242/jeb.125401

    Article  PubMed  Google Scholar 

  42. Brooks NE, Myburgh KH, Storey KB (2015) Muscle satellite cells increase during hibernation in ground squirrels. Comp Biochem Physiol Part B 189:55–61. https://doi.org/10.1016/j.cbpb.2015.07.006

    Article  CAS  Google Scholar 

  43. Tessier SN, Storey KB (2010) Expression of myocyte enhancer factor-2 and downstream genes in ground squirrel skeletal muscle during hibernation. Mol Cell Biochem 344:151–162. https://doi.org/10.1007/s11010-010-0538-y

    Article  CAS  PubMed  Google Scholar 

  44. Nicolas N, Mira J-C, Gallien CL, Chanoine C (1998) Localization of Myf-5, MRF4 and a cardiac actin mRNAs in regenerating Xenopus skeletal muscle. Académie des Sci 355–364

    Article  CAS  Google Scholar 

  45. Hirotani H, Tuohy NA, Woo J-T et al (2004) The calcineurin/nuclear factor of activated T cells signaling pathway regulates osteoclastogenesis in RAW264.7 cells. J Biol Chem 279:13984–13992. https://doi.org/10.1074/jbc.M213067200

    Article  CAS  PubMed  Google Scholar 

  46. Li Q, Lin X, Yang X, Chang J (2010) NFATc4 is negatively regulated in miR-133a-mediated cardiomyocyte hypertrophic repression. Am J Physiol Heart Circ Physiol 298:H1340–H1347. https://doi.org/10.1152/ajpheart.00592.2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Li M, Wang N, Zhang J et al (2016) MicroRNA-29a-3p attenuates ET-1-induced hypertrophic responses in H9c2 cardiomyocytes. Gene 585:44–50. https://doi.org/10.1016/j.gene.2016.03.015

    Article  CAS  PubMed  Google Scholar 

  48. Wu CW, Biggar KK, Storey KB (2013) Dehydration mediated microRNA response in the African clawed frog Xenopus laevis. Gene 529:269–275. https://doi.org/10.1016/j.gene.2013.07.064

    Article  CAS  PubMed  Google Scholar 

  49. Bentzinger CF, Wang YX, Rudnicki MA (2012) Building muscle: molecular regulation of myogenesis. Cold Spring Harb Perspect Biol 4:1–16. https://doi.org/10.1101/cshperspect.a008342

    Article  CAS  Google Scholar 

  50. Cohen TJ, Waddell DS, Barrientos T et al (2007) The histone deacetylase HDAC4 connects neural activity to muscle transcriptional reprogramming. J Biol Chem 282:33752–33759. https://doi.org/10.1074/jbc.M706268200

    Article  CAS  PubMed  Google Scholar 

  51. Tang H, Macpherson P, Marvin M et al (2009) A histone deacetylase 4/myogenin positive feedback loop coordinates denervation-dependent gene induction and suppression. Mol Biol Cell 20:1120–1131. https://doi.org/10.1091/mbc.E08-07-0759

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by a Discovery grant from the Natural Sciences and Engineering Research Council (NSERC) of Canada (#6793) to Kenneth B. Storey. Kenneth B. Storey holds the Canada Research Chair in Molecular Physiology; Yichi Zhang held a postgraduate Queen Elizabeth II Graduate Scholarship in Science and Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenneth B. Storey.

Ethics declarations

Conflict of interest

The authors declare that we have no conflict of interest.

Ethical approval

Animals were cared for in accordance with the guidelines of the Canadian Council on Animal Care and all experimental procedures had the prior approval of the Carleton University Animal Care Committee (protocol #13683).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., English, S.G. & Storey, K.B. Regulation of nuclear factor of activated T cells (NFAT) and downstream myogenic proteins during dehydration in the African clawed frog. Mol Biol Rep 45, 751–761 (2018). https://doi.org/10.1007/s11033-018-4214-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-018-4214-8

Keywords

Navigation