Skip to main content
Log in

Molecular characterization and expression profiling of BMP 3 gene in broiler and layer chicken

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

A study was carried out to characterize and explore the expression profile of BMP 3 gene in control broiler and control layer chicken. The total open reading frame of BMP 3 (1389 bp) was cloned and sequenced. The control broiler and control layer chicken showed variation at nucleotide and amino acid level with reference gene (Gallus gallus, NCBI Acc. No. NM_001034819). When compared to reference gene, the control broiler showed four nucleotide differences (c.192A>G, c.519C>T, 903G>A and 960C>G), while, control layer showed variation at c.33G>C, 192A>G, 858G>A, 904G>A, 960C>G and 1257C>T making six differences in total. However, between control broiler and control layer lines, nucleotide differences was observed at c.33G>C, 519T>C, 858G>A, 903A>G, 904G>A and 1257C>T. The change at amino acid level between reference and control broiler was p.D320N and with control layer chicken, it was p.D302N and p.D320N. On the other hand, a single amino acid difference (p.D302N) was observed between the control broiler and control layer chicken lines. The phylogenetic study displayed a close relationship between broiler and layer lines and reference gene and also with other avian species resulting in a cluster formation. These cluster in turn displayed a distant link with the mammalian species. The expression profile of BMP 3 gene exhibited a variation at different stages of embryonic development and also at post embryonic period among the lines with control layer showing higher expression than that of broiler chicken. The protein was also detected in bone marrow tissue of broiler and layer lines by western blotting. It is concluded that the BMP 3 gene sequence differed at nucleotide and amino acid level among the lines and the gene expressed differentially at different periods of embryonic development and also at post hatch period.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Urist MR (1965) Bone: formation by autoinduction. Science 150:893–899

    Article  PubMed  CAS  Google Scholar 

  2. Reddi AH, Huggins C (1972) Biochemical sequences in the transformation of normal fibroblasts in adolescent rats. Proc Natl Acad Sci USA 69:1601–1605

    Article  PubMed  CAS  Google Scholar 

  3. Wozney JM, Rosen V, Celeste AJ, Mitsock LM, Whitters MJ (1988) Novel regulators of bone formation: molecular clones and activities. Science 242:1528–1534

    Article  PubMed  CAS  Google Scholar 

  4. Hogan BL (1996) Bone morphogenetic proteins: multifunctional regulators of vertebrate development. Genes Dev 10:1580–1594

    Article  PubMed  CAS  Google Scholar 

  5. Wang RN, Green J, Wang Z, Deng Y, Qiao M, Peabody M, Zhang Q, Ye J, Yan Z, Denduluri S, Idowu O, Li M, Shen C, Hu A, Haydon RC, Kang R, Mok J, Lee MJ, Luu HL, Shi LL (2014) Bone morphogenetic protein (BMP) signaling in development and human diseases. Genes Dis 1:87–105

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Gamer LW, Ho V, Cox K, Rosen V (2008) Expression and function of BMP 3 during chick limb development. Dev Dyn 237:1691–1698

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Gamer LW, Cox K, Carlo JM, Rosen V (2009) Overexpression of BMP 3 in the developing skeleton alters endochondral bone formation resulting in spontaneous rib fractures. Dev Dyn 238(9):2374–2381

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Wozney JM, Capparella J, Rosen V (1993) The bone morphogenetic proteins in cartilage and bone development. In: Berfield M (ed) Molecular basis of morphogenesis, vol 3. Wiley, New York, p 221–230

    Google Scholar 

  9. Harland RM (1994) The transforming growth factor beta family and induction of the vertebrate mesoderm: bone morphogenetic proteins are ventral inducers [comment]. Proc Natl Acad Sci USA 91:10243–10246

    Article  PubMed  CAS  Google Scholar 

  10. Nacamuli RP, Fong KD, Lenton KA, Song HM, Fang TD, Salim A, Longaker MT (2005) Expression and possible mechanisms of regulation of BMP 3 in rat cranial sutures. Plast Reconstr Surg 116:1353–1362

    Article  PubMed  CAS  Google Scholar 

  11. Gamer L, Korepta L, Cox K, Rosen V (2006) BMP 3 regulates osteoblast differentiation and maturation in the postnatal skeleton. J Bone Min Res 211(suppl 1):S33

    Google Scholar 

  12. Tsuji K, Nove J, Gamer L, Cox K, Rosen V (2006) BMP 3 is a mediator of age dependent bone loss in postnatal mice through its action on osteoblast differentiation. J Bone Min Res 21:S1–S77

    Google Scholar 

  13. Long F, Linsenmayer TF (1998) Regulation of growth region cartilage proliferation and differentiation by perichondrium. Development 125:1067–1073

    PubMed  CAS  Google Scholar 

  14. Di Nino DL, Long F, Linsenmayer TF (2001) Regulation of endochondral cartilage growth in the developing avian limb: cooperative involvement of perichondrium and periosteum. Dev Biol 240:433–442

    Article  PubMed  CAS  Google Scholar 

  15. Rahman MS, Akhtar N, Jamil HM, Banik RS, Asaduzzaman SM (2015) TGF-β/ BMP signaling and other molecular events: regulation of osteoblastogenesis and bone formation. Bone Res 3:15005

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Kettunen P, Nie X, Kvinnsland IH, Luukko K (2006) Histological development and dynamic expression of Bmp2-6 mRNAs in the embryonic and postnatal mouse cranial base. Anat Rec A 288:1250–1258

    Article  CAS  Google Scholar 

  17. Rath NC, Huff GR, Huff WE, Balog JM (2000) Factors regulating bone maturity and strength in poultry. Poult Sci 79:1024–1032

    Article  PubMed  CAS  Google Scholar 

  18. Gasteiger E, Gattiker A, Hoogland C, Ivanyi I, Appel RD, Bairoch A (2003) ExPASy, the proteomics server for in-depth protein knowledge and analysis. Nucl Acids Res 31:3784–3788

    Article  PubMed  CAS  Google Scholar 

  19. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    PubMed  CAS  Google Scholar 

  20. Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874

    Article  PubMed  CAS  Google Scholar 

  21. Gasteiger E, Hoogland C, Gattiker A, Duvaud S, Wilkins MR, Appel RD, Bairoch A (2005) Protein identification and analysis tools on the ExPASy server. In: John M. Walker (ed) The proteomics protocols handbook, Humana Press, New York, p 571–607.

    Chapter  Google Scholar 

  22. Peterson TN, Brunak S, Heijne GV, Nielsen H (2011) SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat Methods 8:785–786

    Article  CAS  Google Scholar 

  23. Finn RD, Coggill P, Eberhardt RY, Eddy SR, Mistry J, Mitchell AL, Potter SC, Punta M, Qureshi M, Sangrador-Vegas A, Salazar GA, Tate J, Bateman A (2016) The Pfam protein families database: towards a more sustainable future. Nucleic Acids Res 44:D279–D285

    Article  CAS  Google Scholar 

  24. Letunic I, Doerks T, Bork P (2015) SMART: recent updates, new developments and status in 2015. Nucleic Acids Res 43(D1):D257–D260

    Article  CAS  Google Scholar 

  25. Omasits U, Ahrens CH, Müller S, Wollscheid B (2014) Protter: interactive protein feature visualization and integration with experimental proteomic data. Bioinformatics 30(6):884–886

    Article  PubMed  CAS  Google Scholar 

  26. Geourjon C, Deleage G (1995) SOPMA: significant improvements in protein secondary structure prediction by consensus prediction from multiple alignments. Comput Appl Biosci 11(6):681–684

    PubMed  CAS  Google Scholar 

  27. Yang J, Yan R, Roy A, Xu D, Poisson J, Zhang Y (2015) The I-TASSER suite: protein structure and function prediction. Nat Methods 12:7–8

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Roy A, Kucukural A, Zhang Y (2010) I-TASSER: a unified platform for automated protein structure and function prediction. Nat Protoc 5:725–738

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Xu D, Zhang Y (2011) Improving the physical realism and structural accuracy of protein models by a two-step atomic-level energy minimization. Biophys J 101:2525–2534

    Article  CAS  Google Scholar 

  30. Laskowski RA, MacArthur MW, Moss DS, Thornton JM (1993) PROCHECK—a program to check the stereochemical quality of protein structures. J Appl Crystallogr 26:283–291

    Article  CAS  Google Scholar 

  31. Szklarczyk D, Franceschini A, Wyder S, Forslund K, Heller D, Huerta-Cepas J, Simonovic M, Roth A, Santos A, Tsafou KP, Kuhn M, Bork P, Jensen LJ, von Mering C (2015) STRING v10: protein-protein interaction networks, integrated over the tree of life. Nucleic Acids Res 43:D447–D452

    Article  CAS  Google Scholar 

  32. Miyazono K, Hellman U, Wernsedt C, Heldin CH (1998) Latent high molecular weight complex of transforming growth factor-β1: purification from human platelets and structural characterization. J Biol Chem 263:6407–6415

    Google Scholar 

  33. Gamer LW, Nove J, Levin M, Rosen V (2005) BMP-3 is a novel inhibitor of both activin and BMP-4 signaling in Xenopus embryos. Dev Biol 285:156–168

    Article  PubMed  CAS  Google Scholar 

  34. Allendorph GP, Isaacs MJ, Kawaskami Y, Izpisua Belmonte JC, Choe S (2007) BMP-3 and BMP-6 structures illuminate the nature of binding specificity with receptors. Biochemistry 46:12238–12247

    Article  PubMed  CAS  Google Scholar 

  35. Carreira AC, Lojudice FH, Halcsik E, Navarro RD, Sogayar MC, Granjeiro JM (2014) Bone morphogenetic proteins: facts, challenges, and future perspectives. J Dent Res 93:335–345

    Article  PubMed  CAS  Google Scholar 

  36. Agaviezor BO, Ajayi FO, Omoyibo TW (2017) Bone morphogenetic protein 3 (BMP 3) gene variation in some livestock animals. Niger J Biotechnol 32:28–32

    Article  Google Scholar 

  37. Toogood AA, Harvey S, Thorner MO, Gaylinn BD (2006) Cloning of the chicken pituitary receptor for growth hormone-releasing hormone. Endocrinology 147(4):1838–1846

    Article  PubMed  CAS  Google Scholar 

  38. Kerr T, Roalson EH, Rodgers BD (2005) Phylogenetic analysis of the myostatin gene sub-family and the differential expression of a novel member in zebrafish. Evol Dev 7(5):390–400

    Article  PubMed  CAS  Google Scholar 

  39. Kumar ST, Dilbaghi N, Ahlawat SPS, Mishra B, Tantia MS, Vijh RK (2007) Genetic relationship among chicken populations of India based on SNP markers of Myostatin gene (GDF 8). Int J Poult Sci 6(9):684–688

    Article  Google Scholar 

  40. Eivazi A, Modarresi M, Sharifinia M (2014) Bioinformatics analysis of myostatin gene and protein in different species. Int J Biosci 5(7):5–11

    Article  CAS  Google Scholar 

  41. Feiner N, Begemann G, Renz AJ, Meyer A, Kuraku S (2009) The origin of bmp16, a novel Bmp2/4 relative, retained in teleost fish genomes. BMC Evol Biol 9:277

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. McCord CL, Westneat MW (2016) Phylogenetic relationships and the evolution of BMP4 in triggerfishes and filefishes (Balistoidea). Mol Phylogenet Evol 94(A):397–409

    Article  PubMed  CAS  Google Scholar 

  43. Swain D, Dash K (2015) Comparative and evolutionary analysis of growth hormone (GH) protein of Cyprinids using computational approach. Int J Fish Aquat Stud 2(5):191–197

    Google Scholar 

  44. Zhu K, Guo H, Zhang N, Li Y, Jiang S, Zhang D (2018) Functional characteristic and differential expression of myostatin in Chlamys nobilis. J Appl Anim Res 46(1):685–690

    Article  CAS  Google Scholar 

  45. Roche DB, Buenavista MT, McGuffin LJ (2012) Predicting protein structures and structural annotation of proteomes. In: Roberts GCK (ed) Encyclopedia of biophysics, Springer: Berlin

    Google Scholar 

  46. Mohamoud HS, Hussain MR, El-Harouni AA, Shaik NA, Qasmi ZU, Merican AF, Baig M, Anwar Y, Asfour H, Bondagji N, AlAama JY (2014) First comprehensive in silico analysis of the functional and structural consequences of SNPs in human GalNAc-T1 gene. Comput Math Methods Med 2014:904052. https://doi.org/10.1155/2014/904052

    Article  PubMed  Google Scholar 

  47. Carrington JL, Chen P, Yanagishita M, Reddi AH (1999) Osteogenin (bone morphogenetic protein-3) stimulates cartilage formation by chick limb bud cells in vitro. Dev Biol 146(2):406–415

    Article  Google Scholar 

  48. Daluiski A, Engstrand T, Bahamonde ME, Gamer LW, Agius E, Stevenson SL, Cox K, Rosen V, Lyons KM (2001) Bone morphogenetic protein-3 is a negative regulator of bone density. Nat Genet 27(1):84–88

    Article  PubMed  CAS  Google Scholar 

  49. Yang J, Shi P, Tu M, Wang Y, Liu M, Fan F, Du M (2014) Bone morphogenetic proteins: relationship between molecular structure and their osteogenic activity. Food Sci Hum Well 3:127–135

    Article  Google Scholar 

  50. Lu FZ, Chen J, Wang XX, Liu HL (2009) Investigation of the insulin-like growth factor system in breast muscle during embryonic and postnatal development in langshan and arbor acres chickens subjected to different feeding regimens. Asian-Aust J Anim Sci 22(4):471–482

    Article  CAS  Google Scholar 

  51. Bhattacharya TK, Chatterjee RN (2013) Polymorphism of the myostatin gene and its association with growth traits in chicken. Poult Sci 92(4):910–915

    Article  PubMed  CAS  Google Scholar 

  52. Guru Vishnu P, Bhattacharya TK, Kumar P, Chaterjee RN, Ravi Kumar GVPPS, Paswan C, Reddy DK, Rajendra Prasad A (2016) Expression profiling of activin type IIB receptor during ontogeny in broiler and indigenous chicken. Anim Biotechnol 28(1):26–36

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The work has been done under National Fellow project and conveys our thanks to ICAR for support. We also thank to Director, ICAR-DPR for providing facilities to conduct experiment. We are also thankful to Dr. G. Subramanian, Asst. Prof., Department of Biotechnology, National College, Tiruchirapalli, India for helping us in predicting the tertiary structure of protein.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tarun Kumar Bhattacharya.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Divya, D., Bhattacharya, T.K., Gnana Prakash, M. et al. Molecular characterization and expression profiling of BMP 3 gene in broiler and layer chicken. Mol Biol Rep 45, 477–495 (2018). https://doi.org/10.1007/s11033-018-4184-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-018-4184-x

Keywords

Navigation