Advertisement

Molecular Biology Reports

, Volume 45, Issue 4, pp 403–411 | Cite as

Thermal stability and conformation of DNA and proteins under the confined condition in the matrix of hydrogels

  • Shu-ichi Nakano
  • Daisuke Yamaguchi
  • Naoki Sugimoto
Original Article
  • 202 Downloads

Abstract

Spatially confined environments are seen in biological systems and in the fields of biotechnology and nanotechnology. The confinement restricts the conformational space of polymeric molecules and increasing the degree of molecular crowding. Here, we developed preparation methods for agarose and polyacrylamide gels applicable to UV spectroscopy that can evaluate the confinement effects on DNA and protein structures. Measurements of UV absorbance and CD spectra showed no significant effect of the confinement in the porous media of agarose gels on the base-pair stability of DNA polynucleotides [poly(dA)/poly(dT)] and oligonucleotides (hairpin, duplex, and triplex structures). On the other hand, a highly confined environment created by polyacrylamide gels at high concentrations increased the stability of polynucleotides while leaving that of oligonucleotides unaffected. The changes in the base-pair stability of the polynucleotides were accompanied by the perturbation of the helical conformation. The polyacrylamide gels prepared in this study were also used for the studies on proteins (lysozyme, bovine serum albumin, and myoglobin). The effects on the proteins were different from the effects on DNA structures, suggesting different nature of interactions within the gel. The experimental methods and results are useful to understand the physical properties of nucleic acids and proteins under confined conditions.

Keywords

DNA polynucleotide Oligonucleotide Melting temperature Agarose gel Polyacrylamide gel Molecular crowding 

Notes

Acknowledgements

We thank Junpei Ueno for technical assistance. This work was supported in part by Grants-in-Aid for Scientific Research, Japan Society for the Promotion of Science (JSPS KAKENHI Grant No. 24550200) and the Ministry of Education, Culture, Sports, Science and Technology (MEXT)-Supported Program for the Strategic Research Foundation at Private Universities, 2009–2014, Japan.

References

  1. 1.
    Klumpp S, Scott M, Pedersen S, Hwa T (2013) Molecular crowding limits translation and cell growth. Proc Natl Acad Sci USA 110:16754–16759CrossRefPubMedGoogle Scholar
  2. 2.
    Tabaka M, Kalwarczyk T, Holyst R (2014) Quantitative influence of macromolecular crowding on gene regulation kinetics. Nucleic Acids Res 42:727–738CrossRefPubMedGoogle Scholar
  3. 3.
    Matsuda H, Putzel GG, Backman V, Szleifer I (2014) Macromolecular crowding as a regulator of gene transcription. Biophys J 106:1801–1810CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Nakano S, Sugimoto N (2016) Model studies of the effects of intracellular crowding on nucleic acid interactions. Mol Biosyst 13:32–41CrossRefPubMedGoogle Scholar
  5. 5.
    Zhou HX, Rivas G, Minton AP (2008) Macromolecular crowding and confinement: biochemical, biophysical, and potential physiological consequences. Annu Rev Biophys 37:375–397CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Nakano S, Miyoshi D, Sugimoto N (2014) Effects of molecular crowding on the structures, interactions, and functions of nucleic acids. Chem Rev 114:2733–2758CrossRefPubMedGoogle Scholar
  7. 7.
    Parry BR, Surovtsev IV, Cabeen MT, O’Hern CS, Dufresne ER, Jacobs-Wagner C (2014) The bacterial cytoplasm has glass-like properties and is fluidized by metabolic activity. Cell 156:183–194CrossRefPubMedGoogle Scholar
  8. 8.
    Jun S, Mulder B (2006) Entropy-driven spatial organization of highly confined polymers: lessons for the bacterial chromosome. Proc Natl Acad Sci USA 103:12388–12393CrossRefPubMedGoogle Scholar
  9. 9.
    Buenemann M, Lenz P (2010) A geometrical model for DNA organization in bacteria. PLoS ONE 5:e13806CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Mittal J, Best RB (2008) Thermodynamics and kinetics of protein folding under confinement. Proc Natl Acad Sci USA 105:20233–20238CrossRefPubMedGoogle Scholar
  11. 11.
    Tan ZJ, Chen SJ (2012) Ion-mediated RNA structural collapse: effect of spatial confinement. Biophys J 103:827–836CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Castronovo M, Stopar A, Coral L, Redhu SK, Vidonis M, Kumar V, Ben FD, Grassi M, Nicholson AW (2013) Effects of nanoscale confinement on the functionality of nucleic acids: implications for nanomedicine. Curr Med Chem 20:3539–3557CrossRefPubMedGoogle Scholar
  13. 13.
    Bismuto E, Irace G (2001) The effect of molecular confinement on the conformational dynamics of the native and partly folded state of apomyoglobin. FEBS Lett 509:476–480CrossRefPubMedGoogle Scholar
  14. 14.
    Bismuto E, Martelli PL, De Maio A, Mita DG, Irace G, Casadio R (2002) Effect of molecular confinement on internal enzyme dynamics: frequency domain fluorometry and molecular dynamics simulation studies. Biopolymers 67:85–95CrossRefPubMedGoogle Scholar
  15. 15.
    Bolis D, Politou AS, Kelly G, Pastore A, Temussi PA (2004) Protein stability in nanocages: a novel approach for influencing protein stability by molecular confinement. J Mol Biol 336:203–212CrossRefPubMedGoogle Scholar
  16. 16.
    Zhou HX, Dill KA (2001) Stabilization of proteins in confined spaces. Biochemistry 40:11289–11293CrossRefPubMedGoogle Scholar
  17. 17.
    Johnson T, Zhu J, Wartell RM (1998) Differences between DNA base pair stacking energies are conserved over a wide range of ionic conditions. Biochemistry 37:12343–12350CrossRefPubMedGoogle Scholar
  18. 18.
    Zhu J, Wartell RM (1999) The effect of base sequence on the stability of RNA and DNA single base bulges. Biochemistry 38:15986–15993CrossRefPubMedGoogle Scholar
  19. 19.
    Nakano M, Moody EM, Liang J, Bevilacqua PC (2002) Selection for thermodynamically stable DNA tetraloops using temperature gradient gel electrophoresis reveals four motifs: d(cGNNAg), d(cGNABg), d(cCNNGg), and d(gCNNGc). Biochemistry 41:14281–14292CrossRefPubMedGoogle Scholar
  20. 20.
    Turner DH (2000) Conformational changes. In Bloomfield VA, Crothers DM, Tinoco I Jr. (eds) Nucleic acids: structures, properties and functions, University Science Books Press, Sausalito, pp 259–334Google Scholar
  21. 21.
    Mergny JL, Lacroix L (2003) Analysis of thermal melting curves. Oligonucleotides 13:515–537CrossRefPubMedGoogle Scholar
  22. 22.
    Puglisi JD, Tinoco I Jr (1989) Absorbance melting curves of RNA. Methods Enzymol 180:304–325CrossRefPubMedGoogle Scholar
  23. 23.
    Riley M, Maling B (1966) Physical and chemical characterization of two- and three-stranded adenine-thymine and adenine-uracil homopolymer complexes. J Mol Biol 20:359–389CrossRefPubMedGoogle Scholar
  24. 24.
    Richard RG, Fasman GD (1975) Handbook of biochemistry and molecular biology: nucleic acids, vol 1, 3rd edn. CRC Press, Cleveland, p 597Google Scholar
  25. 25.
    Xiong JY, Narayanan J, Liu XY, Chong TK, Chen SB, Chung TS (2005) Topology evolution and gelation mechanism of agarose gel. J Phys Chem B 109:5638–5643CrossRefPubMedGoogle Scholar
  26. 26.
    Zhou J, Zhou M, Caruso RA (2006) Agarose template for the fabrication of macroporous metal oxide structures. Langmuir 22:3332–3336CrossRefPubMedGoogle Scholar
  27. 27.
    Tako M, Nakamura S (1988) Gelation mechanism of agarose. Carbohydr Res 180:277–284CrossRefGoogle Scholar
  28. 28.
    Haggerty L, Sugarman JH, Prud’homme RK (1988) Diffusion of polymers through polyacrylamide gels. Polymer 29:1058–1063CrossRefGoogle Scholar
  29. 29.
    Holmes DL, Stellwagen NC (1991) Estimation of polyacrylamide gel pore size from Ferguson plots of linear DNA fragments. II. Comparison of gels with different crosslinker concentrations, added agarose and added linear polyacrylamide. Electrophoresis 12:612–619CrossRefPubMedGoogle Scholar
  30. 30.
    Nakano S, Yoshida M, Yamaguchi D, Sugimoto N (2014) Preparation of hydrogels for the study of the effects of spatial confinement on DNA. Trans Mater Res Soc Jpn 39:435–438CrossRefGoogle Scholar
  31. 31.
    Spink CH, Chaires JB (1995) Selective stabilization of triplex DNA by poly(ethylene glycols). J Am Chem Soc 117:12887–12888CrossRefGoogle Scholar
  32. 32.
    Nakano S, Wu L, Oka H, Karimata HT, Kirihata T, Sato Y, Fujii S, Sakai H, Kuwahara M, Sawai H, Sugimoto N (2008) Conformation and the sodium ion condensation on DNA and RNA structures in the presence of a neutral cosolute as a mimic of the intracellular media. Mol BioSyst 4:579–588CrossRefPubMedGoogle Scholar
  33. 33.
    Nakano S, Kitagawa Y, Miyoshi D, Sugimoto N (2014) Hammerhead ribozyme activity and oligonucleotide duplex stability in mixed solutions of water and organic compounds. FEBS Open Bio 4:643–650CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Eggers DK, Valentine JS (2001) Molecular confinement influences protein structure and enhances thermal protein stability. Protein Sci 10:250–261CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Eggers DK, Valentine JS (2001) Crowding and hydration effects on protein conformation: a study with sol-gel encapsulated proteins. J Mol Biol 314:911–922CrossRefPubMedGoogle Scholar
  36. 36.
    Cheung MS, Thirumalai D (2006) Nanopore-protein interactions dramatically alter stability and yield of the native state in restricted spaces. J Mol Biol 357:632–643CrossRefPubMedGoogle Scholar
  37. 37.
    Wiggins PM, van Ryn RT (1990) Changes in ionic selectivity with changes in density of water in gels and cells. Biophys J 58:585–596CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Zhu Y, Granick S (2001) Viscosity of interfacial water. Phys Rev Lett 87:096104CrossRefPubMedGoogle Scholar
  39. 39.
    Raviv U, Laurat P, Klein J (2001) Fluidity of water confined to subnanometre films. Nature 413:51–54CrossRefPubMedGoogle Scholar
  40. 40.
    Nakano S, Yamaguchi D, Tateishi-Karimata H, Miyoshi D, Sugimoto N (2012) Hydration changes upon DNA folding studied by osmotic stress experiments. Biophys J 102:2808–2817CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Nanobiochemistry, Faculty of Frontiers of Innovative Research in Science and Technology (FIRST)Konan UniversityKobeJapan
  2. 2.Frontier Institute for Biomolecular Engineering Research (FIBER)Konan UniversityKobeJapan

Personalised recommendations