Molecular Biology Reports

, Volume 43, Issue 12, pp 1451–1463 | Cite as

MYD88 and functionally related genes are associated with multiple infections in a model population of Kenyan village dogs

  • Michaela Necesankova
  • Leona Vychodilova
  • Katerina Albrechtova
  • Lorna J. Kennedy
  • Jan Hlavac
  • Kamil Sedlak
  • David Modry
  • Eva Janova
  • Mirko Vyskocil
  • Petr Horin
Original Article


The purpose of this study was to seek associations between immunity-related molecular markers and endemic infections in a model population of African village dogs from Northern Kenya with no veterinary care and no selective breeding. A population of village dogs from Northern Kenya composed of three sub-populations from three different areas (84, 50 and 55 dogs) was studied. Canine distemper virus (CDV), Hepatozoon canis, Microfilariae (Acantocheilonema dracunculoides, Acantocheilonema reconditum) and Neospora caninum were the pathogens studied. The presence of antibodies (CDV, Neospora), light microscopy (Hepatozoon) and diagnostic PCR (Microfilariae) were the methods used for diagnosing infection. Genes involved in innate immune mechanisms, NOS3, IL6, TLR1, TLR2, TLR4, TLR7, TLR9, LY96, MYD88, and three major histocompatibility genes class II genes were selected as candidates. Single nucleotide polymorphism (SNP) markers were detected by Sanger sequencing, next generation sequencing and PCR-RFLP. The Fisher´s exact test for additive and non-additive models was used for association analyses. Three SNPs within the MYD88 gene and one TLR4 SNP marker were associated with more than one infection. Combined genotypes and further markers identified by next generation sequencing confirmed associations observed for individual genes. The genes associated with infection and their combinations in specific genotypes match well our knowledge on their biological role and on the role of the relevant biological pathways, respectively. Associations with multiple infections observed between the MYD88 and TLR4 genes suggest their involvement in the mechanisms of anti-infectious defenses in dogs.


Kenyan village dogs Immunity-related genes Associations Infectious diseases 



This work was supported by the Central European Institute of Technology (CEITEC) CZ.1.05/1.1.00/02.0068 and by the project IGA VFU 157/2008/FVL.

Supplementary material

11033_2016_4078_MOESM1_ESM.pdf (231 kb)
Supplementary material 1 (PDF 230 KB)


  1. 1.
    O’Brien SJ, Evermann JF (1988) Interactive influence of infectious disease and genetic diversity in natural populations. Trends Ecol Evol 3:254–259CrossRefPubMedGoogle Scholar
  2. 2.
    May RM, Anderson RM (1983) Epidemiology and genetics in the coevolution of parasites and hosts. Proc R Soc Ser B Biol Sci 219:281–313CrossRefGoogle Scholar
  3. 3.
    Luikart G, Pilgrim K, Visty J, Ezenwa VO, Schwartz MK (2008) Candidate gene microsatellite variation is associated with parasitism in wild bighorn sheep. Biol Lett 4:228–231CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Turner AK, Begon M, Jackson JA, Bradley JE, Paterson S (2011) Genetic diversity in cytokines associated with immune variation and resistance to multiple pathogens in a natural rodent population. PLoS Genet. doi: 10.1371/journal.pgen.1002343 Google Scholar
  5. 5.
    Spurgin LG, Richardson DS (2010) How pathogens drive genetic diversity: MHC, mechanisms and misunderstandings. Proc Biol Sci 277:979–988CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Ke X, Kennedy LJ, Short AD, Seppälä EH, Barnes A, Clements DN, Wood SH, Carter SD, Happ GM, Lohi H, Ollier WER (2011) Assessment of the functionality of genome-wide canine SNP arrays and implications for canine disease association studies. Anim Genet 42:181–190CrossRefPubMedGoogle Scholar
  7. 7.
    Kennedy LJ, Barnes A, Short A, Brown JJ, Seddon J, Fleeman L, Brkljacic M, Happ, GM, Catchpole B, Ollier WER (2007) Canine DLA diversity: 3. Disease studies. Tissue Antigens. 69(s1):292–296CrossRefPubMedGoogle Scholar
  8. 8.
    Pacheco AG, Moraes MO (2009) Genetic polymorphisms of infectious diseases in case-control studies. Dis Markers 27:173–186CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Vignal A, Milan D, SanCristobal M, Eggen A (2002) A review on SNP and other types of molecular markers and their use in animal genetics. Genet Sel Evol 34:275–305CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Dettogni RS, Tristão-Sá R, dos Santos M, da Silva FF, Louro ID (2015) Single nucleotide polymorphisms in immune system genes and their association with clinical symptoms persistence in dengue-infected persons. Hum Immunol 76:717–723CrossRefPubMedGoogle Scholar
  11. 11.
    Dutra MS, Bela SR, Peixoto-Rangel AL, Fakiola M, Cruz AG, Gazzinelli A, Quites HF, Bahia-Oliveira LM, Peixe RG, Campos WR, Higino-Rocha AC, Miller NE, Blackwell JM, Antonelli LR, Gazzinelli RT (2013) Association of a NOD2 gene polymorphism and T-helper 17 cells with presumed ocular toxoplasmosis. J Infect Dis 207:152–163CrossRefPubMedGoogle Scholar
  12. 12.
    Froeschke G, Sommer S (2012) Insights into the complex associations between MHC class II DRB polymorphism and multiple gastrointestinal parasite infestations in the striped mouse. PLoS One. doi: 10.1371/journal.pone.0031820 PubMedPubMedCentralGoogle Scholar
  13. 13.
    Charbonnel N, Pagès M, Sironen T, Henttonen H, Vapalahti O, Mustonen J, Vaheri A (2014) Immunogenetic factors affecting susceptibility of humans and rodents to hantaviruses and the clinical course of hantaviral disease in humans. Viruses 6:2214–2241CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Khor CHCH, Hibberd ML (2012) Host–pathogen interactions revealed by human genome-wide surveys. Trends Genet 28:233–243CrossRefPubMedGoogle Scholar
  15. 15.
    Rausell A, Telenti A (2014) Genomics of host-pathogen interactions. Curr Opin Immunol 30:32–38CrossRefPubMedGoogle Scholar
  16. 16.
    Kennedy L, Carter SD, Barnes A, Bell S, Bennett D, Ollier B, Thomson W (1999) Interbreed variation of DLA-DRB1, DQA1 alleles and haplotypes in the dog. Vet Immunol Immunopathol 69:101–111CrossRefPubMedGoogle Scholar
  17. 17.
    Quinnell RJ, Kennedy LJ, Barnes A, Courtenay O, Dye C, Garcez LM, Shaw MA, Carter SD, Thomson W, Ollier WE (2003) Susceptibility to visceral leishmaniasis in the domestic dog is associated with MHC class II polymorphism. Immunogenetics 55:23–28PubMedGoogle Scholar
  18. 18.
    Kennedy LJ, Barnes A, Ollier WER, Day M (2006) Association of a common dog leucocyte antigen class II haplotype with canine primary immune-mediated haemolytic anaemia. J Tissue Antigens 68:502–508CrossRefGoogle Scholar
  19. 19.
    Dyggve H, Kennedy LJ, Meri S, Spillmann T, Lohi H, Speeti M (2011) Association of Doberman hepatitis to canine major histocompatibility complex II. Tissue Antigens 77:30–35CrossRefPubMedGoogle Scholar
  20. 20.
    Shiel RE, Kennedy LJ, Nolan CM, Mooney CT, Callanan JJ (2014) Major histocompatibility complex class II alleles and haplotypes associated with non-suppurative meningoencephalitis in greyhounds. Tissue Antigens 84:271–276CrossRefPubMedGoogle Scholar
  21. 21.
    Acevedo-Whitehouse K, Cunningham AA (2006) Is MHC enough for understanding wildlife immunogenetics? Trends Ecol Evol 21:433–438CrossRefPubMedGoogle Scholar
  22. 22.
    Altet L, Francino O, Solano-Gallego L, Renier C, Sánchez A (2002) Mapping and sequencing of the canine NRAMP1 gene and identification of mutations in leishmaniasis-susceptible dogs. Infect Immun 70:2763–2771CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Utsunomiya YT, Ribeiro ÉS, Quintal APN, Sangalli JR, Gazola VR, Paula HB et al (2015) Genome-wide scan for visceral leishmaniasis in mixed-breed dogs identifies candidate genes involved in T helper cells and macrophage signaling. PLoS One. doi: 10.1371/journal.pone.0136749 Google Scholar
  24. 24.
    Turner AK, Begon M, Jackson JA, Paterson S (2012) Evidence for selection at cytokine loci in a natural population of field voles (Microtus agrestis). Mol Ecol 21:1632–1646CrossRefPubMedGoogle Scholar
  25. 25.
    Boyko AR (2011) The domestic dog: man’s best friend in the genomic era. Genome Biol 12:216CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Albrechtova K (2008) Blood parasites in Samburu dogs. Thesis. University of Veterinary and Pharmaceutical Sciences Brno, Faculty of Veterinary Medicine, p 76Google Scholar
  27. 27.
    Albrechtova K, Sedlak K, Petrzelkova K, Hlavac J, Mihalca AD, Lesingirian A, Kanyari PW, Modry D (2011) Occurrence of filaria in domestic dogs of Samburu pastoralists in Northern Kenya and its associations with canine distemper. Vet Parasitol 182:230–238CrossRefPubMedGoogle Scholar
  28. 28.
    D’Amico G, Mihalca AD, Domsa C, Albrechtová A, Sandor AD, Modry D (2013) Taming the beast: rabies control in the cradle of mankind. Geospat Health 7:409–411CrossRefPubMedGoogle Scholar
  29. 29.
    Boyko AR, Boyko RH, Boyko CM, Parker HG, Castelhano M, Corey L, Degenhardt JD, Auton A, Hedimbi M, Kityo R, Ostrander EA, Schoenebeck J, Todhunter RJ, Jones P, Bustamante CD (2009) Complex population structure in African village dogs and its implications for inferring dog domestication history. PNAS 106:13903–13908CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Kennedy LJ, Barnes A, Short A, Brown JJ, Lester S, Seddon J, Fleeman L, Francino O, Brkljacic M, Knyazev S, Happ GM, Ollier WE (2007) Canine DLA diversity: 1. New alleles and haplotypes. Tissue Antigen 69: 272–288.CrossRefGoogle Scholar
  31. 31.
    Li W (2007) Three lectures on case-control genetic association analysis. Brief Bioinform 9:1–13CrossRefPubMedGoogle Scholar
  32. 32.
    D’Agostino RB, Chase W, Belanger A (1988) The appropriateness of some common procedures for testing the equality of two independent binomial populations. Am Stat 42:198–202Google Scholar
  33. 33.
    Agresti A, Coull BA (2002) The analysis of contingency tables under inequality constraints. J Stat Plan Inference 107:45–73CrossRefGoogle Scholar
  34. 34.
    Zar JH (1999) Biostatical analysis, 4th edn. Prentice Hall, Upper Saddle River, p 662Google Scholar
  35. 35.
    de Wit E, van der Merwe L, van Helden PD, Hoal EG (2011) Gene-gene interaction between tuberculosis candidate genes in a South African population. Mamm Genome 22:100–110CrossRefPubMedGoogle Scholar
  36. 36.
    Peakall R, Smouse PE (2012) GenAlEx 65: genetic analysis in Excel. Population genetic software for teaching and research: an update. Bioinformatics 28:2537–2539CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Horohov DW (2015) The equine immune responses to infectious and allergic disease: A model for humans? Mol Immunol 66:89–96CrossRefPubMedGoogle Scholar
  38. 38.
    Balding DJ (2006) A tutorial on statistical methods for population association studies. Nat Rev Genet 7:781–791CrossRefPubMedGoogle Scholar
  39. 39.
    Hirschhorn JN, Daly MJ (2005) Genome-wide association studies for common diseases and complex traits. Nat Rev Genet 6:95–108CrossRefPubMedGoogle Scholar
  40. 40.
    Clayton DG, Walker NM, Smyth DJ, Pask R, Cooper JD, Maier LM, Smink LJ, Lam AC, Ovington NR, Stevens HE, Nutland S, Howson JM, Faham M, Moorhead M, Jones HB, Falkowski M, Hardenbol P, Willis TD, Todd JA (2005) Population structure, differential bias and genomic control in a large-scale, case-control association study. Nat Genet 37:1243–1246CrossRefPubMedGoogle Scholar
  41. 41.
    Frisk AL, Baumgartner W, Grone A (1999) Dominating interleukin-10 mRNA expression induction in cerebrospinal fluid cells of dogs with natural canine distemper virus induced demyelinating and non-demyelinating CNS lesions. J Neuroimmunol 97:102–109CrossRefPubMedGoogle Scholar
  42. 42.
    Qeska V, Barthel Y, Herder V, Stein VM, Tipold A, Urhausen C, Günzel-Apel AR, Rohn K, Baumgärtner W, Beineke A (2014) Canine distemper virus infection leads to an inhibitory phenotype of monocyte-derived dendritic cells in vitro with reduced expression of co-stimulatory molecules and increased interleukin-10 transcription. PLoS One. doi: 10.1371/journal.pone.0096121 PubMedPubMedCentralGoogle Scholar
  43. 43.
    Picard C, Casanova JL, Puel A (2011) Infectious diseases in patients with IRAK-4, MyD88, NEMO or I kappa B alpha deficiency. Clin Microb Rev 24: 490–497CrossRefGoogle Scholar
  44. 44.
    Albiger B, Sandgren A, Katsuragi H, Meyer-Hoffert U, Beiter K, Wartha F, Hornef M, Normark S, Normark BH (2005) Myeloid differentiation factor 88-dependent signalling controls bacterial growth during colonization and systemic pneumococcal disease in mice. Cell Microbiol 7:1603–1615CrossRefPubMedGoogle Scholar
  45. 45.
    Seki E, Tsutsui H, Tsuji NM, Hayashi N, Adachi K, Nakano H, Futatsugi-Yumikura S, Takeuchi O, Hoshino K, Akira S, Fujimoto J, Nakanishi K (2002) Critical roles of myeloid differentiation factor 88-dependent proinflammatory cytokine release in early phase clearance of Listeria monocytogenes in mice. J Immunol 169:3863–3868CrossRefPubMedGoogle Scholar
  46. 46.
    Mansur DS, Kroon EG, Nogueira ML, Arantes RM, Rodrigues SC, Akira S, Gazzinelli RT, Campos MA (2005) Lethal encephalitis in myeloid differentiation factor 88-deficient mice infected with herpes simplex virus 1. Am J Pathol 166:1419–1426CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Delale T, Paquin A, Asselin-Paturel C, Dalod M, Brizard G, Bates EE, Kastner P, Chan S, Akira S, Vicari A, Biron CA, Trinchieri G, Brière F (2005) MyD88-dependent and -independent murine cytomegalovirus sensing for IFN-alpha release and initiation of immune responses in vivo. J Immunol 175:6723–6732CrossRefPubMedGoogle Scholar
  48. 48.
    Bafica A, Santiago HC, Goldszmid R, Ropert C, Gazzinelli RT, Sher A (2006) Cutting edge: TLR9 and TLR2 signaling together account for MyD88-dependent control of parasitemia in Trypanosoma cruzi infection. J Immunol 177:3515–3519CrossRefPubMedGoogle Scholar
  49. 49.
    Takaki H, Takeda M, Tahara M, Shingai M, Oshiumi H, Matsumoto M, Seya T (2013) The MyD88 pathway in plasmacytoid and CD4+ dendritic cells primarily triggers type I IFN production against measles virus in a mouse infection model. J Immunol 191:4740–4747CrossRefPubMedGoogle Scholar
  50. 50.
    Noreen M, Arsad M (2015) Association of TLR1, TLR2, TLR4, TLR6, and TIRAP polymorphisms with disease susceptibility. Immunol Res 62:234–252CrossRefPubMedGoogle Scholar
  51. 51.
    Ajdary S, Ghamilouie MM, Alimohammadian MH, Riazi-Rad F, Pakzad SR (2011) Toll-like receptor 4 polymorphisms predispose to cutaneous leishmaniasis. Microbes Infect 13:226–231CrossRefPubMedGoogle Scholar
  52. 52.
    Kropf P, Freudenberg MA, Modolell M, Price HP, Herath S, Antoniazi S, Galanos C, Smith DF, Müller I (2004) Toll-like receptor 4 contributes to efficient control of infection with the protozoan parasite Leishmania major. Infect Immun 72:1920–1928CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Ellis J, Sinclair D, Morrison D, Al-Qassab S, Springett K, Ivens A (2010) Microarray analyses of mouse responses to infection by Neospora caninum identifies disease associated cellular pathways in the host response. Mol Biochem Parasitol 174:117–127CrossRefPubMedGoogle Scholar
  54. 54.
    Goodridge HS, Marshall FA, Else KJ, Houston KM, Egan C, Al-Riyami L, Liew FY, Harnett W, Harnett MM (2005) Immunomodulation via novel use of TLR4 by the filarial nematode phosphorylcholine-containing secreted product, ES-62. J Immunol 174:284–293CrossRefPubMedGoogle Scholar
  55. 55.
    Safra N, Pedersen NC, Wolf Z, Johnson EG, Liu HW, Hughes AM, Young A, Bannasch DL (2011) Expanded dog leukocyte antigen (DLA) single nucleotide polymorphism (SNP) genotyping reveals spurious class II associations. Vet J 189:220–226CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Telfer S, Lambin X, Birtles R, Beldomenico P, Burthe S, Paterson S, Begon M (2010) Species interactions in a parasite community drive infection risk in a wildlife population. Science 330:243–246CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Cleaveland S, Appel MG, Chalmers WS, Chillingworth C, Kaare M, Dye C (2000) Serological and demographic evidence for domestic dogs as a source of canine distemper virus infection for Serengeti wildlife. Vet Microbiol 72:217–227CrossRefPubMedGoogle Scholar
  58. 58.
    Cagliani R, Sironi M (2013) Pathogen-driven selection in the human genome. Int J Evol Biol 2013:1–6CrossRefGoogle Scholar
  59. 59.
    Fumagalli M, Sironi M (2014) Human genome variability, natural selection and infectious diseases. Curr Opin Immunol 30:9–16CrossRefPubMedGoogle Scholar
  60. 60.
    Prugnolle F, Manica A, Charpentier M, Guegan JF, Guernier V, Balloux F (2005) Pathogen-driven selection and worldwide HLA class I diversity. Curr Biol 15:1022–1027CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Michaela Necesankova
    • 1
  • Leona Vychodilova
    • 1
  • Katerina Albrechtova
    • 3
  • Lorna J. Kennedy
    • 6
  • Jan Hlavac
    • 3
  • Kamil Sedlak
    • 7
  • David Modry
    • 2
    • 3
    • 4
    • 5
  • Eva Janova
    • 1
    • 2
  • Mirko Vyskocil
    • 1
  • Petr Horin
    • 1
    • 2
  1. 1.Department of Animal GeneticsUniversity of Veterinary and Pharmaceutical SciencesBrnoCzech Republic
  2. 2.Ceitec VFUUniversity of Veterinary and Pharmaceutical SciencesBrnoCzech Republic
  3. 3.Department of Pathology and ParasitologyUniversity of Veterinary and Pharmaceutical SciencesBrnoCzech Republic
  4. 4.Vétérinaires Sans Frontières Czech RepublicBrnoCzech Republic
  5. 5.Biology Centre, Institute of ParasitologyCzech Academy of SciencesCeske BudejoviceCzech Republic
  6. 6.Centre for Integrated Genomic Medical ResearchUniversity of ManchesterManchesterUK
  7. 7.State Veterinary Institute PraguePrahaCzech Republic

Personalised recommendations