Molecular Biology Reports

, Volume 43, Issue 11, pp 1285–1292 | Cite as

The destruction box is involved in the degradation of the NTE family proteins by the proteasome

  • Fei-Fei Huang
  • Ping-An Chang
  • Lan-Xi Sun
  • Wen-Zhen Qin
  • Li-Ping Han
  • Rui Chen
Original Article


Neuropathy target esterase (NTE) and NTE-related esterase (NRE) are endoplasmic reticulum (ER) membrane-anchored proteins belonging to the NTE protein family. NTE and NRE are degraded by macroautophagy and by the ubiquitin–proteasome pathway. However, the regulation of NTE and NRE by proteasome has not been well understood. Western blotting showed that the deletion of the regulatory region of NTE and NRE led to protein accumulation compared with that of the corresponding wild-type proteins. Further, deletion and site-directed mutagenesis experiments demonstrated that the destruction (D) box was required for the proteasomal degradation of NTE and NRE. However, unlike the deletion of the regulatory region, the deletion of the D box did not affect the subcellular localisation of NTE or NRE or disrupt the ER. Moreover, the deletion of the D box or the regulatory region of NTE has similar inhibitory effects on cell growth, which are greater than those produced by the full-length NTE. Here, for the first time, we show that the D box is involved in the regulation of NTE family proteins by the proteasome but not in their subcellular localisation. In addition, these results suggest that the NTE overexpression-mediated inhibition of cell growth is related to active protein levels but not to its ER disruption effect.


Neuropathy target esterase Destruction box Ubiquitin–proteasome pathway Endoplasmic reticulum Cell growth 



The authors would like to thank Dr. Paul Glynn for providing NTE constructs, and Enago ( for the English language review.


This study was funded by the Natural Science Foundation Project of CQ CSTC (2014jcyjA10033, cstc2016jcyjA0572)), and by the Science and Technology Project from Chongqing Municipal Education Committee (KJ1400424).

Compliance with ethical standards

Conflict of Interest

The authors declare that they have no conflict of interest.


  1. 1.
    Richardson RJ, Hein ND, Wijeyesakere SJ et al (2013) Neuropathy target esterase (NTE): overview and future. Chem Biol Interact 203:238–244CrossRefPubMedGoogle Scholar
  2. 2.
    Lush MJ, Li Y, Read DJ et al (1998) Neuropathy target esterase and a homologous Drosophila neurodegeneration-associated mutant protein contain a novel domain conserved from bacteria to man. Biochem J 332:1–4CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Winrow CJ, Hemming ML, Allen DM et al (2003) Loss of neuropathy target esterase in mice links organophosphate exposure to hyperactivity. Nat Genet 33:477–485CrossRefPubMedGoogle Scholar
  4. 4.
    Wilson PA, Gardner SD, Lambie NM et al (2006) Characterization of the human patatin-like phospholipase family. J Lipid Res 47:1940–1949CrossRefPubMedGoogle Scholar
  5. 5.
    Kienesberger PC, Oberer M, Lass A et al (2009) Mammalian patatin domain containing proteins: a family with diverse lipolytic activities involved in multiple biological functions. J Lipid Res 50:S63–S68CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Li Y, Dinsdale D, Glynn P (2003) Protein domains, catalytic activity, and subcellular distribution of neuropathy target esterase in mammalian cells. J Biol Chem 278:8820–8825CrossRefPubMedGoogle Scholar
  7. 7.
    Kienesberger PC, Lass A, Preiss-Landl K et al (2008) Identification of an insulin-regulated lysophospholipase with homology to neuropathy target esterase. J Biol Chem 283:5908–5917CrossRefPubMedGoogle Scholar
  8. 8.
    Zaccheo O, Dinsdale D, Meacock PA et al (2004) Neuropathy target esterase and its yeast homologue degrade phosphatidylcholine to glycerophosphocholine in living cells. J Biol Chem 279:24024–24033CrossRefPubMedGoogle Scholar
  9. 9.
    Quistad GB, Barlow C, Winrow CJ et al (2003) Evidence that mouse brain neuropathy target esterase is a lysophospholipase. Proc Natl Acad Sci USA 100:7983–7987CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Akassoglou K, Malester B, Xu J et al (2004) Brain-specific deletion of neuropathy target esterase/swiss cheese results in neurodegeneration. Proc Natl Acad Sci USA 101:5075–5080CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Read DJ, Li Y, Chao MV et al (2009) Neuropathy target esterase is required for adult vertebrate axon maintenance. J Neurosci 29:11594–11600CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Dutta S, Rieche F, Eckl N et al (2016) Glial expression of Swiss-cheese (SWS), the Drosophila orthologue of neuropathy target esterase, is required for neuronal ensheathment and function. Dis Model Mech 9:283–294CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Rainier S, Bui M, Mark E et al (2008) Neuropathy target esterase gene mutations cause motor neuron disease. Am J Hum Genet 82:780–785CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Synofzik M, Gonzalez MA, Lourenco CM et al (2014) PNPLA6 mutations cause Boucher–Neuhauser and gordon holmes syndromes as part of a broad neurodegenerative spectrum. Brain 137:69–77CrossRefPubMedGoogle Scholar
  15. 15.
    Koh K, Kobayashi F, Miwa M et al (2015) Novel mutations in the PNPLA6 gene in Boucher-Neuhäuser syndrome. J Hum Genet 60:217–220CrossRefPubMedGoogle Scholar
  16. 16.
    Topaloglu AK, Lomniczi A, Kretzschmar D et al (2014) Loss-of-function mutations in PNPLA6 encoding neuropathy target esteraseunderlie pubertal failure and neurological deficits in gordon holmes syndrome. J Clin Endocrinol Metab 99:E2067–E2075CrossRefPubMedGoogle Scholar
  17. 17.
    Kmoch S, Majewski J, Ramamurthy V et al (2015) Mutations in PNPLA6 are linked to photoreceptor degeneration and various forms of childhood blindness. Nat Commun 6:5614CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Hufnagel RB, Arno G, Hein ND et al (2015) Neuropathy target esterase impairments cause Oliver-McFarlane and laurence-moon syndromes. J Med Genet 52:85–94CrossRefPubMedGoogle Scholar
  19. 19.
    Moser M, Li Y, Vaupel K et al (2004) Placental failure and impaired vasculogenesis result in embryonic lethality for neuropathy target esterase-deficient mice. Mol Cell Biol 24:1667–1679CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Chen R, Chang PA, Long DX et al (2007) Down-regulation of neuropathy target esterase by protein kinase C activation with PMA stimulation. Mol Cell Biochem 302:179–185CrossRefPubMedGoogle Scholar
  21. 21.
    Chen JX, Long DX, Hou WY et al (2010) Regulation of neuropathy target esterase by the cAMP/protein kinase a signal. Pharmacol Res 62:259–264CrossRefPubMedGoogle Scholar
  22. 22.
    Chen JX, Wu YJ (2013) CREB is required for cAMP/PKA signals upregulating neuropathy target esterase expression. DNA Cell Biol 32:199–205CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Chang PA, Wang ZX, Long DX et al (2012) Identification of two novel splicing variants of murine NTE-related esterase. Gene 497:164–171CrossRefPubMedGoogle Scholar
  24. 24.
    Long DX, Chang PA, Liang YJ et al (2009) Degradation of neuropathy target esterase by the macroautophagic lysosomal pathway. Life Sci 84:89–96CrossRefPubMedGoogle Scholar
  25. 25.
    Chang PA, Chen YY, Long DX et al (2012) Degradation of mouse NTE-related esterase by macroautophagy and the proteasome. Mol Biol Rep 39:7125–7131CrossRefPubMedGoogle Scholar
  26. 26.
    Chang PA, Long DX, Wu YJ et al (2009) Identification and characterization of chicken neuropathy target esterase. Gene 435:45–52CrossRefPubMedGoogle Scholar
  27. 27.
    Chang PA, Chen YY, Qin WZ et al (2011) The role of cell cycle-dependent neuropathy target esterase in cell proliferation. Mol Biol Rep 38:123–130CrossRefPubMedGoogle Scholar
  28. 28.
    Long DX, Wang P, Sun YJ et al (2015) Neuropathy target esterase is degraded by the ubiquitin-proteasome pathway with ARA54 as the ubiquitin ligase. Biochemistry 254:7385–7392CrossRefGoogle Scholar
  29. 29.
    Chen R, Chang PA, Long DX et al (2007) G protein β2 subunit interacts directly with neuropathy target esterase and regulates its activity. Int J Biochem Cell Biol 39:124–132CrossRefPubMedGoogle Scholar
  30. 30.
    Glotzer M, Murray AW, Kirschner MW (1991) Cyclin is degraded by the ubiquitin pathway. Nature 349:132–138CrossRefPubMedGoogle Scholar
  31. 31.
    Choi E, Dial JM, Jeong DE et al (2008) Unique D box and KEN box sequences limit ubiquitination of Acm1 and promotepseudosubstrate inhibition of the anaphase-promoting complex. J Biol Chem 283:23701–23710CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Yamano H, TsurumiC GannonJ et al (1998) The role of the destruction box and its neighbouring lysine residues in cyclin B for anaphase ubiquitin-dependent proteolysis in fission yeast: defining the D-box receptor. EMBO J 17:5670–5678CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Glynn P (2013) Neuronal phospholipid deacylation is essential for axonal and synaptic integrity. Biochim Biophys Acta 1831:633–1641CrossRefPubMedGoogle Scholar
  34. 34.
    Chang PA, Liu CY, Chen R et al (2006) Effect of overexpression of neuropathy target esterase on mammalian cell proliferation. Cell Prolif 39:429–440CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Fei-Fei Huang
    • 1
  • Ping-An Chang
    • 1
  • Lan-Xi Sun
    • 1
  • Wen-Zhen Qin
    • 1
  • Li-Ping Han
    • 1
  • Rui Chen
    • 2
  1. 1.Key Laboratory of Molecular Biology, College of Bio-informationChongqing University of Posts and TelecommunicationsChongqingPeople’s Republic of China
  2. 2.CAS Key Lab for Biomedical Effects of Nanomaterials and NanosafetyNational Center for Nanoscience and Technology of ChinaBeijingPeople’s Republic of China

Personalised recommendations