Molecular Biology Reports

, Volume 43, Issue 11, pp 1273–1284 | Cite as

Association of PALB2 sequence variants with the risk of early-onset breast cancer in patients from Turkey

  • G. Cecener
  • G. Guney Eskiler
  • U. Egeli
  • B. Tunca
  • A. Alemdar
  • S. Gokgoz
  • I. Tasdelen
Original Article


The PALB2 gene, has been accepted as a moderate-penetrance gene associated with breast cancer susceptibility and this gene product is involved in the DNA damage repair pathway via co-localization with BRCA2. Germline PALB2 mutations are associated with an increased breast cancer risk. However, the prevalence of the diverse types of PALB2 variants depend on the population. Thus, the aim of the present study was to determine, for the first time, the prevalence of PALB2 variants in a Turkish population of BRCA1/BRCA2-negative early-onset patients with breast cancer. In total, 223 Turkish patients with BRCA1/BRCA2 negative early-onset breast cancer and 60 unaffected women were included in the study. All the coding exons and intron/exon boundaries of PALB2 were subjected to mutational analysis by heteroduplex analysis (HDA)and DNA sequencing. Eighteen PALB2 variants were found in breast cancer patients within the Turkish population. Three variants (c.271G>A, c.404C>A and c.2981T>A) have not been previously reported. In addition, nine intronic variants were described, and this study is the first to describe the c.1685-44T>A intronic variant. The prevalence of possible pathogenic PALB2 variants was found to be 4.03 % in BRCA1/2-negative Turkish patients with early-onset breast cancer. Different variants of PALB2 have been reported in the literature, and the prevalence of these variants could different for each population. This is the first study to investigate the prevalence of PALB2 variants in Turkish patients with early-onset breast cancer.


Early-onset breast cancer Moderate-penetrance genes PALB2 gene Turkish population 



We would like to thank biologist Ayten Haciefendi in the Department of Medical Biology Uludag University, who kindly provided technical support to this study. This study was supported by a grant from the Scientific Research Projects Foundation (BAP) of the Uludag University of Turkey [Project No: UAP(T)-2015/3].

Compliance with ethical standards

Conflict of Interest

The authors declare no conflicts of interest.


  1. 1.
    Lalloo F, Evans DG (2012) Familial breast cancer. Clin Genet 82:105–114CrossRefPubMedGoogle Scholar
  2. 2.
    Economopoulou P, Dimitriadis G, Psyrri A (2015) Beyond BRCA: new hereditary breast cancer susceptibility genes. Cancer Treat Rev 41:1–8CrossRefPubMedGoogle Scholar
  3. 3.
    Balmana J, Diez O, Rubio I, Castiglione M (2010) BRCA in breast cancer: ESMO clinical practice guidelines. Ann Oncol 22(6):20–22CrossRefGoogle Scholar
  4. 4.
    Shiovitz S, Korde LA (2015) Genetics of breast cancer: a topic in evolution.Ann Oncol:1–9Google Scholar
  5. 5.
    Meijers-Heijboer H, Van den Ouweland A, Klijn J et al (2002) Low-penetrance susceptibility to breast cancer due to CHEK2(*) 1100delC in noncarriers of BRCA1 or BRCA2 mutations. Nat Genet 31:55–59CrossRefPubMedGoogle Scholar
  6. 6.
    Seal S, Thompson D, Renwick A et al (2006) Truncating mutations in the Fanconi anemia J gene BRIP1 are low-penetrance breast cancer susceptibility alleles. Nat Genet 38:1239–1241CrossRefPubMedGoogle Scholar
  7. 7.
    Renwick A, Thompson D, Seal S et al (2006) ATM mutations that cause ataxia-telangiectasia are breast cancer susceptibility alleles. Nat Genet 38:873–875CrossRefPubMedGoogle Scholar
  8. 8.
    Rahman N, Seal S, Thompson D et al (2007) PALB2, which encodes a BRCA2-interacting protein, is a breast cancer susceptibility gene. Nat Genet 39:165–167CrossRefPubMedGoogle Scholar
  9. 9.
    Xia B, Sheng Q, Nakanishi K et al (2006) Control of BRCA2 cellular and clinical functions by a nuclear partner, PALB2. Mol Cell 22:719–729CrossRefPubMedGoogle Scholar
  10. 10.
    Zhang F, Ma J, Wu J et al (2009) PALB2 links BRCA1 and BRCA2 in the DNA-damage response. Curr Biol 19:524–529CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Sy SM, Huen MS, Zhu Y, Chen J (2009) PALB2 regulates recombinational repair through chromatin association and oligomerization. J Biol Chem 284:18302–18310CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Southey MC, Teo ZL, Dowty JG et al (2010) A PALB2 mutation associated with high risk of breast cancer. Breast Cancer Res 12(109):1–10Google Scholar
  13. 13.
    Erkko H, Dowty JG, Nikkilä J et al (2008) Penetrance analysis of the PALB2 c.1592delT founder mutation. Clin Cancer Res 14:4667–4671CrossRefPubMedGoogle Scholar
  14. 14.
    Teo ZL, Park DJ, Provenzano E et al (2013) Prevalence of PALB2 mutations in Australasian multiple-case breast cancer families. Breast Cancer Res 15(1):1–14CrossRefGoogle Scholar
  15. 15.
    Leyton Y, Gonzalez-Hormazabal P, Blanco R et al (2015) Association of PALB2 sequence variants with the risk of familial and early-onset breast cancer in a South-American population. BMC Cancer 15(30):1–10Google Scholar
  16. 16.
    Phuah SY, Lee SY, Kang P et al (2013) Prevalence of PALB2 mutations in breast cancer patients in multi-ethnic Asian population in Malaysia and Singapore. PLoS One 8(8):e73638CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Cao AY, Huang J, Hu Z et al (2009) The prevalence of PALB2 germline mutations in BRCA1/BRCA2 negative Chinese women with early onset breast cancer or affected relatives. Breast Cancer Res Treat 114:457–462CrossRefPubMedGoogle Scholar
  18. 18.
    Foulkes WD, Ghadirian P, Akbari MR et al (2007) Identification of a novel truncating PALB2 mutation and analysis of its contribution to early-onset breast cancer in French-Canadian women. Breast Cancer Res 9(6):R83CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Erkko H, Xia B, Nikkilae J et al (2007) A recurrent mutation in PALB2 in Finnish cancer families. Nature 446:316–319CrossRefPubMedGoogle Scholar
  20. 20.
    Sluiter M, Mew S, van Rensburg EJ (2009) PALB2 sequence variants in young South African breast cancer patients. Fam Cancer 8:347–353CrossRefPubMedGoogle Scholar
  21. 21.
    Vietri MT, Caliendo G, Schiano C et al (2015) Analysis of PALB2 in a cohort of Italian breast cancer patients: identification of a novel PALB2 truncating mutation. Fam Cancer 14(3):341–348CrossRefPubMedGoogle Scholar
  22. 22.
    Blanco A, de la Hoya M, Balmaña J et al (2012) Detection of a large rearrangement in PALB2 in Spanish breast cancer families with male breast cancer. Breast Cancer Res Treat 132(1):307–315CrossRefPubMedGoogle Scholar
  23. 23.
    Egeli U, Cecener G, Tunca B, Tasdelen I (2006) Novel Germline BRCA1 and BRCA2 mutations in Turkish women with breast and/or ovarian cancer and their relatives. Cancer Invest 24:484–491CrossRefPubMedGoogle Scholar
  24. 24.
    Cecener G, Egeli U, Tunca B et al (2014) BRCA1/2 germline mutations and their clinical importance in Turkish breast cancer patients. Cancer Invest 32(8):375–387CrossRefPubMedGoogle Scholar
  25. 25.
    Erturk E, Cecener G, Polatkan V et al (2014) Evaluation of genetic variations in miRNA-binding sites of BRCA1 and BRCA2 genes as risk factors for the development of early-onset and/or familial breast cancer. Asian Pac J Cancer Prev 15(19):8319–8324CrossRefPubMedGoogle Scholar
  26. 26.
    Nguyen-Dumont T, Hammet F, Mahmoodi M et al (2015) Mutation screening of PALB2 in clinically ascertained families from the Breast Cancer Family Registry. Breast Cancer Res Treat 149(2):547–554CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Blanco A, de la Hoya M, Osorio A et al (2013) Analysis of PALB2 gene in BRCA1/BRCA2 negative Spanish hereditary breast/ovarian cancer families with pancreatic cancer cases. PLoS One 8(7):e67538CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Antoniou AC, Casadei S, Heikkinen T et al (2014) Breast-cancer risk in families with mutations in PALB2. N Engl J Med 371(6):497–506CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    García MJ, Fernández V, Osorio A et al (2009) Analysis of FANCB and FANCN/PALB2 Fanconi anemia genes in BRCA1/2-negative Spanish breast cancer families. Breast Cancer Res Treat 113:545–551CrossRefPubMedGoogle Scholar
  30. 30.
    Balia C, Sensi E, Lombardi G et al (2010) PALB2: a novel inactivating mutation in a Italian breast cancer family. Fam Cancer 9(4):531–536CrossRefPubMedGoogle Scholar
  31. 31.
    Ding YC, Steele L, Chu LH et al (2011) Germline mutations in PALB2 in African–American breast cancer cases. Breast Cancer Res Treat 126(1):227–230CrossRefPubMedGoogle Scholar
  32. 32.
    Hartley T, Cavallone L, Sabbaghian N et al (2014) Mutation analysis of PALB2 in BRCA1 and BRCA2-negative breast and/or ovarian cancer families from Eastern Ontario. Canada. Hered Cancer Clin Pract 12(1):19CrossRefPubMedGoogle Scholar
  33. 33.
    Zheng Y, Zhang J, Niu Q et al (2012) Novel germline PALB2 truncating mutations in african american breast cancer patients. Cancer 118:1362–1370CrossRefPubMedGoogle Scholar
  34. 34.
    Hellebrand H, Sutter C, Honisch E et al (2011) Germline mutations in the PALB2 gene are population specific and occur with low frequencies in familial breast cancer. Hum Mutat 32:2176–2188CrossRefGoogle Scholar
  35. 35.
    Dansonka-Mieszkowska A, Kluska A, Moes J et al (2010) A novel germline PALB2 deletion in Polish breast and ovarian cancer patients. BMC Med Genet 11:20CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Bogdanova N, Sokolenko AP, Iyevleva AG et al (2011) PALB2 mutations in German and Russian patients with bilateral breast cancer. Breast Cancer Res Treat 126:545–550CrossRefPubMedGoogle Scholar
  37. 37.
    Tischkowitz M, Capanu M, Sabbaghian N et al (2012) Rare germline mutations in PALB2 and breast cancer risk: a population-based study. Hum Mutat 33:674–680CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Li YT, Jiang WH, Wang XW et al (2015) PALB2 mutations in breast cancer patients from a multi-ethnic region in northwest China. Eur J Med Res 20(85):1–5Google Scholar
  39. 39.
    Thompson ER, Gorringe KL, Rowley SM et al (2015) Prevalence of PALB2 mutations in Australian familial breast cancer cases and controls. Breast Cancer Res 17(1):1–11CrossRefGoogle Scholar
  40. 40.
    Hofstatter EW, Domchek SM, Miron A et al (2011) PALB2 mutations in familial breast and pancreatic cancer. Fam Cancer 10:225–231CrossRefPubMedGoogle Scholar
  41. 41.
    Wong-Brown MW, Avery-Kiejda KA, Bowden NA, Scott RJ (2014) Low prevalence of germline PALB2 mutations in Australian triple-negative breast cancer. Int J Cancer 134:301–305CrossRefPubMedGoogle Scholar
  42. 42.
    Heikkinen T, Karkkainen H, Aaltonen K et al (2009) The breast cancer susceptibility mutation PALB2 1592delT is associated with an aggressive tumor phenotype. Clin Cancer Res 15:3214–3222CrossRefPubMedGoogle Scholar
  43. 43.
    Tischkowitz M, Xia B (2010) PALB2/FANCN: recombining cancer and Fanconi Anemia. Cancer Res 70:7353–7359CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Tischkowitz M, Xia B, Sabbaghian N et al (2007) Analysis of PALB2/FANCN-associated breast cancer families. Proc Natl Acad Sci USA 104(16):6788–6793CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Teo ZL, Provenzano E, Dite GS et al (2013) Tumour morphology predicts PALB2 germline mutations status. Br J Cancer 109:154–163CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • G. Cecener
    • 1
  • G. Guney Eskiler
    • 1
  • U. Egeli
    • 1
  • B. Tunca
    • 1
  • A. Alemdar
    • 1
  • S. Gokgoz
    • 2
  • I. Tasdelen
    • 2
  1. 1.Department of Medical Biology, Medical FacultyUludag UniversityBursaTurkey
  2. 2.Department of General Surgery, Medical FacultyUludag UniversityBursaTurkey

Personalised recommendations