Molecular Biology Reports

, Volume 43, Issue 9, pp 957–966 | Cite as

Overexpression of SpCBL6, a calcineurin B-like protein of Stipa purpurea, enhanced cold tolerance and reduced drought tolerance in transgenic Arabidopsis

Original Article


The purpose of the present study was to characterize SpCBL6 (GenBank accession number: KT780442) from Stipa purpurea and elucidate the function of this protein in abiotic stress. The full-length cDNA of SpCBL6 was isolated from S. purpurea by rapid amplification of cDNA ends methods. Laser confocal microscopy was used to analyze the subcellular localization of SpCBL6. The constructs of 35S:GFP-SpCBL6 was used to transform wild-type (WT) Arabidopsis plants (ecotype Columbia-0) with the floral dip method. Quantitative reverse-transcription PCR (qRT-PCR), water potential, photosynthetic efficiency (F v/F m), and ion leakage was performed to investigate the role of SpCBL6 in abiotic stress. The open reading frame of SpCBL6 contains 681 bp nucleotides and encodes a 227-amino acid polypeptide. Phylogenetic analysis indicated that SpCBL6 showed the highest similarity with rice OsCBL6. SpCBL6 transcripts were induced by freezing and drought treatments. Subcellular localization analysis showed that SpCBL6 was located in membrane of protoplast. Overexpression of SpCBL6 in Arabidopsis thaliana demonstrated that the transgenic plants were more tolerant to cold treatment, but less tolerant to drought, compared with the plants. qRT-PCR analysis showed that the drought stress marker genes were inhibited in transgenic plants, whereas the cold stress marker genes were enhanced. Further analysis showed that SpCBL6-overexpressing plants showed enhanced water potential, photosynthetic efficiency (F v/F m), and reduced ion leakage compared with the wild-type after cold treatment. Collectively, these results indicate that SpCBL6, a new member of the CBL gene family isolated from S. purpurea, enhances cold tolerance and reduces drought tolerance in plants.


Calcineurin B-like protein Cold tolerance Stipa purpurea Transgenic Arabidopsis 



This work was financially supported by the National Natural Science Foundation of China (NSFC) (No. 41271058 to Y.P.Y.) and the Major State Basic Research Development Program of China (No. 2010CB951704).

Compliance with ethical standards

Conflict of interest

The authors declare no competing or financial interests.

Supplementary material

11033_2016_4036_MOESM1_ESM.doc (16 kb)
Supplementary material 1 (DOC 16 kb)


  1. 1.
    Li R, Zhang J, Wei J, Wang H, Wang Y, Ma R (2009) Functions and mechanisms of the CBL–CIPK signaling system in plant response to abiotic stress. Prog Nat Sci USA 19:667–676CrossRefGoogle Scholar
  2. 2.
    Knight H (1999) Calcium signaling during abiotic stress in plants. Int Rev Cytol 195:269–324CrossRefGoogle Scholar
  3. 3.
    Cheong YH, Kim K-N, Pandey GK, Gupta R, Grant JJ, Luan S (2003) CBL1, a calcium sensor that differentially regulates salt, drought, and cold responses in Arabidopsis. Plant Cell 15:1833–1845CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Luan S, Kudla J, Rodriguez-Concepcion M, Yalovsky S, Gruissem W (2002) Calmodulins and calcineurin B-like proteins: calcium sensors for specific signal response coupling in plants. Plant Cell 14(Suppl):S389–S400PubMedPubMedCentralGoogle Scholar
  5. 5.
    Kolukisaoglu Ü, Weinl S, Blazevic D, Batistic O, Kudla J (2004) Calcium sensors and their interacting protein kinases: genomics of the Arabidopsis and rice CBL-CIPK signaling networks. Plant Physiol 134:43–58CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Zhang H, Yang B, Liu WZ, Li H, Wang L, Wang B, Deng M, Liang W, Deyholos MK, Jiang YQ (2014) Identification and characterization of CBL and CIPK gene families in canola (Brassica napus L.). BMC Plant Biol 14:8. doi: 10.1186/1471-2229-14-8 CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Manik SMN, Shi S, Mao J, Dong L, Su Y, Wang Q, Liu H (2015) The calcium sensor CBL-CIPK is involved in plants response to abiotic stresses. Int J Genomics 2015:10. doi: 10.1155/2015/493191 CrossRefGoogle Scholar
  8. 8.
    Liu J, Ishitani M, Halfter U, Kim C-S, Zhu J-K (2000) The Arabidopsis thaliana SOS2 gene encodes a protein kinase that is required for salt tolerance. Proc Natl Acad Sci USA 97(7):3730–3734CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Qiu Q-S, Guo Y, Dietrich MA, Schumaker KS, Zhu J-K (2002) Regulation of SOS1, a plasma membrane Na+/H+ exchanger in Arabidopsis thaliana, by SOS2 and SOS3. Proc Natl Acad Sci USA 99:8436–8441CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Ren XL, Qi GN, Feng HQ, Zhao S, Zhao SS, Wang Y, Wu WH (2013) Calcineurin B-like protein CBL10 directly interacts with AKT1 and modulates K+ homeostasis in Arabidopsis. Plant J 74(2):258–266CrossRefPubMedGoogle Scholar
  11. 11.
    Monihan SM, Magness CA, Yadegari R, Smith SE, Schumaker KS (2016) Arabidopsis CALCINEURIN B-LIKE10 functions independently of the sos pathway during reproductive development in saline conditions. Plant Physiol 171(1):369–379. doi: 10.1104/pp.16.00334 CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Chen L, Ren J, Shi H, Zhang Y, You Y, Fan J, Chen K, Liu S, Nevo E, Fu J, Peng J (2015) TdCBL6, a calcineurin B-like gene from wild emmer wheat (Triticum dicoccoides), is involved in response to salt and low-K+stresses. Mol Breeding 35:1–12CrossRefGoogle Scholar
  13. 13.
    Dong L, Wang Q, Manik SMN, Song Y, Shi S, Su Y, Liu G, Liu H (2015) Nicotiana sylvestris calcineurin B-like protein NsylCBL10 enhances salt tolerance in transgenic Arabidopsis. Plant Cell Rep 34(12):2053–2063. doi: 10.1007/s00299-015-1851-4 CrossRefPubMedGoogle Scholar
  14. 14.
    Chen L, Ren F, Zhou L, Wang QQ, Zhong H, Li XB (2012) The Brassica napus calcineurin B-Like 1/CBL-interacting protein kinase 6 (CBL1/CIPK6) component is involved in the plant response to abiotic stress and ABA signalling. J Exp Bot 63(17):6211–6222. doi: 10.1093/jxb/ers273 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Yue P, Lu X, Ye R, Zhang C, Yang S, Zhou Y, Peng M (2011) Distribution of Stipa purpurea steppe in the Northeastern Qinghai-Xizang Plateau (China). Russian J Ecol 42:50–56CrossRefGoogle Scholar
  16. 16.
    Liu WS, Dong M, Song ZP, Wei W (2009) Genetic diversity pattern of Stipa purpurea populations in the hinterland of Qinghai-Tibet Plateau. Ann Appl Biol 154:57–65CrossRefGoogle Scholar
  17. 17.
    Bai X, Long J, He X, Li S, Xu H (2014) Molecular cloning and characterization of pathogenesis-related protein family 10 gene from spinach (SoPR10). Biosci Biotechnol Biochem 78:780–786CrossRefPubMedGoogle Scholar
  18. 18.
    Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16(6):735–743CrossRefPubMedGoogle Scholar
  19. 19.
    Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative pcr and the 2 − δδct method. Methods 25:402–408CrossRefPubMedGoogle Scholar
  20. 20.
    Bai X, Long J, He X, Yan J, Chen X, Tan Y, Li K, Chen L, Xu H (2016) Overexpression of spinach non-symbiotic hemoglobin in Arabidopsis resulted in decreased NO content and lowered nitrate and other abiotic stresses tolerance. Sci Rep 6:26400. doi: 10.1038/srep26400 CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Yoo S-D, Cho Y-H, Sheen J (2007) Arabidopsis mesophyll protoplasts: a versatile cell system for transient gene expression analysis. Nat Protoc 2(7):1565–1572CrossRefPubMedGoogle Scholar
  22. 22.
    Li X, Zhou Y, Yang Y, Yang S, Sun X, Yang Y (2015) Physiological and proteomics analyses reveal the mechanism of Eichhornia crassipes tolerance to high-concentration cadmium stress compared with Pistia stratiotes. PLoS One 10(4):e0124304. doi: 10.1371/journal.pone.0124304 CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Huang C, Ding S, Zhang H, Du H, An L (2011) CIPK7 is involved in cold response by interacting with CBL1 in Arabidopsis thaliana. Plant Sci 181:57–64CrossRefGoogle Scholar
  24. 24.
    Ye N, Zhu G, Liu Y, Li Y, Zhang J (2011) ABA controls H2O2 accumulation through the induction of OsCATB in rice leaves under water stress. Plant Cell Physiol 52(4):689–698CrossRefPubMedGoogle Scholar
  25. 25.
    Kim TH, Bo¨ hmer M, Hu H, Nishimura N, JI S (2010) Guard cell signal transduction network: advances in understanding abscisic acid, CO2, and Ca2+ signaling. Annu Rev Plant Biol 61:561–591CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Peleg Z, Blumwald E (2011) Hormone balance and abiotic stress tolerance in crop plants. Curr Opin Plant Biol 14:290–295CrossRefPubMedGoogle Scholar
  27. 27.
    Agarwal PK, Jha B (2010) Transcription factors in plants and ABA dependent and independent abiotic stress signalling. Biol Plant 54(2):201–212CrossRefGoogle Scholar
  28. 28.
    Harshavardhan VT, Van Son L, Seiler C, Junker A, Weigelt-Fischer K, Klukas C, Altmann T, Sreenivasulu N, Baumlein H, Kuhlmann M (2014) AtRD22 and AtUSPL1, members of the plant-specific BURP domain family involved in Arabidopsis thaliana drought tolerance. PLoS One 9(10):e110065CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Shinozaki K, Yamaguchi-Shinozaki K (2000) Molecular responses to dehydration and low temperature: differences and cross-talk between two stress signaling pathways. Curr Opin Plant Biol 3(3):217–223CrossRefPubMedGoogle Scholar
  30. 30.
    Abe H, Yamaguchi-Shinozaki K, Urao T, Iwasaki T, Hosokawa D, Shinozaki K (1997) Role of Arabidopsis MYC and MYB homologs in drought- and abscisic acid-regulated gene expression. Plant Cell 9(10):1859–1868PubMedPubMedCentralGoogle Scholar
  31. 31.
    Verbruggen N, Hermans C (2008) Proline accumulation in plants: a review. Amino Acids 35(4):753–759CrossRefPubMedGoogle Scholar
  32. 32.
    Liu Q, Kasuga M, Sakuma Y, Abe H, Miura S, Yamaguchi-Shinozaki K, Shinozaki K (1998) Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought- and low-temperature-responsive gene expression, respectively Arabidopsis. Plant Cell 10(8):1391–1406CrossRefPubMedGoogle Scholar
  33. 33.
    Lata C, Prasad M (2011) Role of DREBs in regulation of abiotic stress responses in plants. J Exp Bot 62(14):4731–4748CrossRefPubMedGoogle Scholar
  34. 34.
    Campos PS, nia Quartin V, chicho Ramalho J, Nunes MA (2003) Electrolyte leakage and lipid degradation account for cold sensitivity in leaves of Coffea sp. plants. J Plant Physiol 160:283–292CrossRefPubMedGoogle Scholar
  35. 35.
    Schulze WX, Schneider T, Starck S, Martinoia E, Trentmann O (2012) Cold acclimation induces changes in Arabidopsis tonoplast protein abundance and activity and alters phosphorylation of tonoplast monosaccharide transporters. Plant J 69:529–541CrossRefPubMedGoogle Scholar
  36. 36.
    Szabados L, Savoure A (2010) Proline: a multifunctional amino acid. Trends Plant Sci 15(2):89–97CrossRefPubMedGoogle Scholar
  37. 37.
    Thalhammer A, Hincha DK (2014) A mechanistic model of COR15 protein function in plant freezing tolerance: integration of structural and functional characteristics. Plant Signal Behav 9:e977722CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Puhakainen T, Hess MW, Mäkelä P, Svensson J, Heino P, Palva ET (2004) Overexpression of multiple dehydrin genes enhances tolerance to freezing stress in Arabidopsis. Plant Mol Biol 54:743–753CrossRefPubMedGoogle Scholar
  39. 39.
    Cadou A, Couturier A, Le Goff C, Soto T, Miklos I, Sipiczki M, Xie L, Paulson JR, Cansado J, Le Goff X (2010) Kin1 is a plasma membrane-associated kinase that regulates the cell surface in fission yeast. Mol Microbiol 77:1186–1202CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Yanli Zhou
    • 1
    • 2
    • 3
  • Ying Cheng
    • 5
  • Yunqiang Yang
    • 1
    • 2
    • 4
  • Xiong Li
    • 1
    • 2
    • 4
  • Basak Supriyo
    • 1
    • 2
    • 4
  • Xudong Sun
    • 1
    • 2
    • 4
  • Yongping Yang
    • 1
    • 2
    • 3
    • 4
  1. 1.Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of BotanyChinese Academy of SciencesKunmingChina
  2. 2.Plant Germplasm and Genomics Center, The Germplasm Bank of Wild Species, Kunming Institute of BotanyChinese Academy of SciencesKunmingChina
  3. 3.University of the Chinese Academy of SciencesBeijingChina
  4. 4.Institute of Tibetan Plateau Research at Kunming, Kunming Institute of BotanyChinese Academy of SciencesKunmingChina
  5. 5.College of Horticulture and LandscapeYunnan Agricultural UniverssityKunmingChina

Personalised recommendations