Skip to main content
Log in

Overexpression of SpCBL6, a calcineurin B-like protein of Stipa purpurea, enhanced cold tolerance and reduced drought tolerance in transgenic Arabidopsis

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

The purpose of the present study was to characterize SpCBL6 (GenBank accession number: KT780442) from Stipa purpurea and elucidate the function of this protein in abiotic stress. The full-length cDNA of SpCBL6 was isolated from S. purpurea by rapid amplification of cDNA ends methods. Laser confocal microscopy was used to analyze the subcellular localization of SpCBL6. The constructs of 35S:GFP-SpCBL6 was used to transform wild-type (WT) Arabidopsis plants (ecotype Columbia-0) with the floral dip method. Quantitative reverse-transcription PCR (qRT-PCR), water potential, photosynthetic efficiency (F v/F m), and ion leakage was performed to investigate the role of SpCBL6 in abiotic stress. The open reading frame of SpCBL6 contains 681 bp nucleotides and encodes a 227-amino acid polypeptide. Phylogenetic analysis indicated that SpCBL6 showed the highest similarity with rice OsCBL6. SpCBL6 transcripts were induced by freezing and drought treatments. Subcellular localization analysis showed that SpCBL6 was located in membrane of protoplast. Overexpression of SpCBL6 in Arabidopsis thaliana demonstrated that the transgenic plants were more tolerant to cold treatment, but less tolerant to drought, compared with the plants. qRT-PCR analysis showed that the drought stress marker genes were inhibited in transgenic plants, whereas the cold stress marker genes were enhanced. Further analysis showed that SpCBL6-overexpressing plants showed enhanced water potential, photosynthetic efficiency (F v/F m), and reduced ion leakage compared with the wild-type after cold treatment. Collectively, these results indicate that SpCBL6, a new member of the CBL gene family isolated from S. purpurea, enhances cold tolerance and reduces drought tolerance in plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Li R, Zhang J, Wei J, Wang H, Wang Y, Ma R (2009) Functions and mechanisms of the CBL–CIPK signaling system in plant response to abiotic stress. Prog Nat Sci USA 19:667–676

    Article  Google Scholar 

  2. Knight H (1999) Calcium signaling during abiotic stress in plants. Int Rev Cytol 195:269–324

    Article  Google Scholar 

  3. Cheong YH, Kim K-N, Pandey GK, Gupta R, Grant JJ, Luan S (2003) CBL1, a calcium sensor that differentially regulates salt, drought, and cold responses in Arabidopsis. Plant Cell 15:1833–1845

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Luan S, Kudla J, Rodriguez-Concepcion M, Yalovsky S, Gruissem W (2002) Calmodulins and calcineurin B-like proteins: calcium sensors for specific signal response coupling in plants. Plant Cell 14(Suppl):S389–S400

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Kolukisaoglu Ü, Weinl S, Blazevic D, Batistic O, Kudla J (2004) Calcium sensors and their interacting protein kinases: genomics of the Arabidopsis and rice CBL-CIPK signaling networks. Plant Physiol 134:43–58

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Zhang H, Yang B, Liu WZ, Li H, Wang L, Wang B, Deng M, Liang W, Deyholos MK, Jiang YQ (2014) Identification and characterization of CBL and CIPK gene families in canola (Brassica napus L.). BMC Plant Biol 14:8. doi:10.1186/1471-2229-14-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Manik SMN, Shi S, Mao J, Dong L, Su Y, Wang Q, Liu H (2015) The calcium sensor CBL-CIPK is involved in plants response to abiotic stresses. Int J Genomics 2015:10. doi:10.1155/2015/493191

    Article  Google Scholar 

  8. Liu J, Ishitani M, Halfter U, Kim C-S, Zhu J-K (2000) The Arabidopsis thaliana SOS2 gene encodes a protein kinase that is required for salt tolerance. Proc Natl Acad Sci USA 97(7):3730–3734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Qiu Q-S, Guo Y, Dietrich MA, Schumaker KS, Zhu J-K (2002) Regulation of SOS1, a plasma membrane Na+/H+ exchanger in Arabidopsis thaliana, by SOS2 and SOS3. Proc Natl Acad Sci USA 99:8436–8441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ren XL, Qi GN, Feng HQ, Zhao S, Zhao SS, Wang Y, Wu WH (2013) Calcineurin B-like protein CBL10 directly interacts with AKT1 and modulates K+ homeostasis in Arabidopsis. Plant J 74(2):258–266

    Article  CAS  PubMed  Google Scholar 

  11. Monihan SM, Magness CA, Yadegari R, Smith SE, Schumaker KS (2016) Arabidopsis CALCINEURIN B-LIKE10 functions independently of the sos pathway during reproductive development in saline conditions. Plant Physiol 171(1):369–379. doi:10.1104/pp.16.00334

    Article  PubMed  PubMed Central  Google Scholar 

  12. Chen L, Ren J, Shi H, Zhang Y, You Y, Fan J, Chen K, Liu S, Nevo E, Fu J, Peng J (2015) TdCBL6, a calcineurin B-like gene from wild emmer wheat (Triticum dicoccoides), is involved in response to salt and low-K+stresses. Mol Breeding 35:1–12

    Article  Google Scholar 

  13. Dong L, Wang Q, Manik SMN, Song Y, Shi S, Su Y, Liu G, Liu H (2015) Nicotiana sylvestris calcineurin B-like protein NsylCBL10 enhances salt tolerance in transgenic Arabidopsis. Plant Cell Rep 34(12):2053–2063. doi:10.1007/s00299-015-1851-4

    Article  CAS  PubMed  Google Scholar 

  14. Chen L, Ren F, Zhou L, Wang QQ, Zhong H, Li XB (2012) The Brassica napus calcineurin B-Like 1/CBL-interacting protein kinase 6 (CBL1/CIPK6) component is involved in the plant response to abiotic stress and ABA signalling. J Exp Bot 63(17):6211–6222. doi:10.1093/jxb/ers273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Yue P, Lu X, Ye R, Zhang C, Yang S, Zhou Y, Peng M (2011) Distribution of Stipa purpurea steppe in the Northeastern Qinghai-Xizang Plateau (China). Russian J Ecol 42:50–56

    Article  CAS  Google Scholar 

  16. Liu WS, Dong M, Song ZP, Wei W (2009) Genetic diversity pattern of Stipa purpurea populations in the hinterland of Qinghai-Tibet Plateau. Ann Appl Biol 154:57–65

    Article  CAS  Google Scholar 

  17. Bai X, Long J, He X, Li S, Xu H (2014) Molecular cloning and characterization of pathogenesis-related protein family 10 gene from spinach (SoPR10). Biosci Biotechnol Biochem 78:780–786

    Article  CAS  PubMed  Google Scholar 

  18. Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16(6):735–743

    Article  CAS  PubMed  Google Scholar 

  19. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative pcr and the 2 − δδct method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  20. Bai X, Long J, He X, Yan J, Chen X, Tan Y, Li K, Chen L, Xu H (2016) Overexpression of spinach non-symbiotic hemoglobin in Arabidopsis resulted in decreased NO content and lowered nitrate and other abiotic stresses tolerance. Sci Rep 6:26400. doi:10.1038/srep26400

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Yoo S-D, Cho Y-H, Sheen J (2007) Arabidopsis mesophyll protoplasts: a versatile cell system for transient gene expression analysis. Nat Protoc 2(7):1565–1572

    Article  CAS  PubMed  Google Scholar 

  22. Li X, Zhou Y, Yang Y, Yang S, Sun X, Yang Y (2015) Physiological and proteomics analyses reveal the mechanism of Eichhornia crassipes tolerance to high-concentration cadmium stress compared with Pistia stratiotes. PLoS One 10(4):e0124304. doi:10.1371/journal.pone.0124304

    Article  PubMed  PubMed Central  Google Scholar 

  23. Huang C, Ding S, Zhang H, Du H, An L (2011) CIPK7 is involved in cold response by interacting with CBL1 in Arabidopsis thaliana. Plant Sci 181:57–64

    Article  CAS  Google Scholar 

  24. Ye N, Zhu G, Liu Y, Li Y, Zhang J (2011) ABA controls H2O2 accumulation through the induction of OsCATB in rice leaves under water stress. Plant Cell Physiol 52(4):689–698

    Article  CAS  PubMed  Google Scholar 

  25. Kim TH, Bo¨ hmer M, Hu H, Nishimura N, JI S (2010) Guard cell signal transduction network: advances in understanding abscisic acid, CO2, and Ca2+ signaling. Annu Rev Plant Biol 61:561–591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Peleg Z, Blumwald E (2011) Hormone balance and abiotic stress tolerance in crop plants. Curr Opin Plant Biol 14:290–295

    Article  CAS  PubMed  Google Scholar 

  27. Agarwal PK, Jha B (2010) Transcription factors in plants and ABA dependent and independent abiotic stress signalling. Biol Plant 54(2):201–212

    Article  CAS  Google Scholar 

  28. Harshavardhan VT, Van Son L, Seiler C, Junker A, Weigelt-Fischer K, Klukas C, Altmann T, Sreenivasulu N, Baumlein H, Kuhlmann M (2014) AtRD22 and AtUSPL1, members of the plant-specific BURP domain family involved in Arabidopsis thaliana drought tolerance. PLoS One 9(10):e110065

    Article  PubMed  PubMed Central  Google Scholar 

  29. Shinozaki K, Yamaguchi-Shinozaki K (2000) Molecular responses to dehydration and low temperature: differences and cross-talk between two stress signaling pathways. Curr Opin Plant Biol 3(3):217–223

    Article  CAS  PubMed  Google Scholar 

  30. Abe H, Yamaguchi-Shinozaki K, Urao T, Iwasaki T, Hosokawa D, Shinozaki K (1997) Role of Arabidopsis MYC and MYB homologs in drought- and abscisic acid-regulated gene expression. Plant Cell 9(10):1859–1868

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Verbruggen N, Hermans C (2008) Proline accumulation in plants: a review. Amino Acids 35(4):753–759

    Article  CAS  PubMed  Google Scholar 

  32. Liu Q, Kasuga M, Sakuma Y, Abe H, Miura S, Yamaguchi-Shinozaki K, Shinozaki K (1998) Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought- and low-temperature-responsive gene expression, respectively Arabidopsis. Plant Cell 10(8):1391–1406

    Article  CAS  PubMed  Google Scholar 

  33. Lata C, Prasad M (2011) Role of DREBs in regulation of abiotic stress responses in plants. J Exp Bot 62(14):4731–4748

    Article  CAS  PubMed  Google Scholar 

  34. Campos PS, nia Quartin V, chicho Ramalho J, Nunes MA (2003) Electrolyte leakage and lipid degradation account for cold sensitivity in leaves of Coffea sp. plants. J Plant Physiol 160:283–292

    Article  CAS  PubMed  Google Scholar 

  35. Schulze WX, Schneider T, Starck S, Martinoia E, Trentmann O (2012) Cold acclimation induces changes in Arabidopsis tonoplast protein abundance and activity and alters phosphorylation of tonoplast monosaccharide transporters. Plant J 69:529–541

    Article  CAS  PubMed  Google Scholar 

  36. Szabados L, Savoure A (2010) Proline: a multifunctional amino acid. Trends Plant Sci 15(2):89–97

    Article  CAS  PubMed  Google Scholar 

  37. Thalhammer A, Hincha DK (2014) A mechanistic model of COR15 protein function in plant freezing tolerance: integration of structural and functional characteristics. Plant Signal Behav 9:e977722

    Article  PubMed  PubMed Central  Google Scholar 

  38. Puhakainen T, Hess MW, Mäkelä P, Svensson J, Heino P, Palva ET (2004) Overexpression of multiple dehydrin genes enhances tolerance to freezing stress in Arabidopsis. Plant Mol Biol 54:743–753

    Article  CAS  PubMed  Google Scholar 

  39. Cadou A, Couturier A, Le Goff C, Soto T, Miklos I, Sipiczki M, Xie L, Paulson JR, Cansado J, Le Goff X (2010) Kin1 is a plasma membrane-associated kinase that regulates the cell surface in fission yeast. Mol Microbiol 77:1186–1202

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (NSFC) (No. 41271058 to Y.P.Y.) and the Major State Basic Research Development Program of China (No. 2010CB951704).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xudong Sun or Yongping Yang.

Ethics declarations

Conflict of interest

The authors declare no competing or financial interests.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 16 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, Y., Cheng, Y., Yang, Y. et al. Overexpression of SpCBL6, a calcineurin B-like protein of Stipa purpurea, enhanced cold tolerance and reduced drought tolerance in transgenic Arabidopsis . Mol Biol Rep 43, 957–966 (2016). https://doi.org/10.1007/s11033-016-4036-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-016-4036-5

Keywords

Navigation