Molecular Biology Reports

, Volume 43, Issue 9, pp 999–1010 | Cite as

Three slow skeletal muscle troponin genes in small-tailed Han sheep (Ovis aries): molecular cloning, characterization and expression analysis

  • Yan Sun
  • Guizhi Wang
  • Zhibin Ji
  • Tianle Chao
  • Zhaohua Liu
  • Xiaolong Wang
  • Guanqing Liu
  • Changhao Wu
  • Jianmin Wang
Original Article


To explore the basic characteristics and expressing profile of the three slow skeletal muscle troponin genes TNNC1 (Troponin C type 1), TNNI1 (troponin I type 1) and TNNT1 (troponin T type 1). Three purebred Dorper sheep and another three purebred small-tailed Han sheep were selected. The sequence of the genes from the small-tailed Han sheep was cloned using rapid amplification of cDNA ends and reverse transcription-polymerase chain reaction; The characteristics of the predicted amino acids sequences were analyzed using bioinformatics analysis software; Gene expression analyses were performed using quantitative reverse transcription PCR. The full-length cDNA sequences of the genes were 707, 898, and 1001 bp, respectively, and were submitted to GenBank under accession numbers KR153938, KT218688 and KT218690. The three predicted proteins were predicted to be hydrophilic, non-secretory proteins and contain several phosphorylation sites. Multiple alignments and phylogenetic tree analyses showed that the predicted proteins were relatively conserved in mammals. The expression results of the three genes in eight tissues of Dorper and small-tailed Han sheep revealed that the three genes had a similar mRNA expression pattern, whereas distinct differences were observed among the eight tissues of the two sheep species. We cloned the full-length cDNA of the three genes, analyzed the amino acid sequences, and determined the expression levels of the genes. These results might play important roles in facilitating the future research of the three genes.


Small-tailed Han sheep Dorper sheep Cardiac and slow skeletal troponin C Slow skeletal troponin I Slow skeletal troponin T Tissue expression 



This work was financially supported by National Key Technology Support Program (2015BAD03B05) and Shandong Provincial Modern Agriculture Industry Technology System (No. SDAIT-09011-01). We thank the Shandong Huanong Mutton Sheep Farm for providing the experimental sheep.

Compliance with ethical standards

Conflict of interest

The authors declare that there are no conflicts of interest.


  1. 1.
    Kawasaki H, Kretsinger RH (1994) Calcium-binding proteins. 1: EF-hands. Protein profil 1(4):343–517Google Scholar
  2. 2.
    Tobacman LS (1996) Thin filament-mediated regulation of cardiac contraction. Annu Rev Physiol 58:447–481. doi: 10.1146/ CrossRefPubMedGoogle Scholar
  3. 3.
    Filatov VL, Katrukha AG, Bulargina TV, Gusev NB (1999) Troponin: structure, properties, and mechanism of functioning. Biochem Biokhimiia 64(9):969–985Google Scholar
  4. 4.
    Kretsinger RH (1980) Structure and evolution of calcium-modulated proteins. CRC Crit Rev Biochem 8(2):119–174CrossRefPubMedGoogle Scholar
  5. 5.
    Dhoot GK, Gell PG, Perry SV (1978) The localization of the different forms of troponin I in skeletal and cardiac muscle cells. Exp Cell Res 117(2):357–370CrossRefPubMedGoogle Scholar
  6. 6.
    Perry SV (1999) Troponin I: inhibitor or facilitator. Mol Cell Biochem 190(1–2):9–32CrossRefPubMedGoogle Scholar
  7. 7.
    Polly P, Haddadi LM, Issa LL, Subramaniam N, Palmer SJ, Tay ES, Hardeman EC (2003) hMusTRD1alpha1 represses MEF2 activation of the troponin I slow enhancer. J Biol Chem 278(38):36603–36610. doi: 10.1074/jbc.M212814200 CrossRefPubMedGoogle Scholar
  8. 8.
    Perry SV (1998) Troponin T: genetics, properties and function. J Muscle Res Cell Motil 19(6):575–602CrossRefPubMedGoogle Scholar
  9. 9.
    Farah CS, Miyamoto CA, Ramos CH, da Silva AC, Quaggio RB, Fujimori K, Smillie LB, Reinach FC (1994) Structural and regulatory functions of the NH2- and COOH-terminal regions of skeletal muscle troponin I. J Biol Chem 269(7):5230–5240PubMedGoogle Scholar
  10. 10.
    Ohtsuki I, Maruyama K, Ebashi S (1986) Regulatory and cytoskeletal proteins of vertebrate skeletal muscle. Adv Protein Chem 38:1–67CrossRefPubMedGoogle Scholar
  11. 11.
    Parmacek MS, Solaro RJ (2004) Biology of the troponin complex in cardiac myocytes. Prog Cardiovasc Dis 47(3):159–176CrossRefPubMedGoogle Scholar
  12. 12.
    Hershberger RE, Norton N, Morales A, Li D, Siegfried JD, Gonzalez-Quintana J (2010) Coding sequence rare variants identified in MYBPC3, MYH6, TPM1, TNNC1, and TNNI3 from 312 patients with familial or idiopathic dilated cardiomyopathy. Circ Cardiovasc Genet 3(2):155–161. doi: 10.1161/CIRCGENETICS.109.912345 CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Yamane A, Mayo M, Shuler C, Crowe D, Ohnuki Y, Dalrymple K, Saeki Y (2000) Expression of myogenic regulatory factors during the development of mouse tongue striated muscle. Arch Oral Biol 45(1):71–78CrossRefPubMedGoogle Scholar
  14. 14.
    Pierzchala M, Hoekman AJ, Urbanski P, Kruijt L, Kristensen L, Young JF, Oksbjerg N, Goluch D, te Pas MF (2014) Validation of biomarkers for loin meat quality (M. longissimus) of pigs. J Anim Breed Genet 131(4):258–270. doi: 10.1111/jbg.12081 CrossRefPubMedGoogle Scholar
  15. 15.
    Sasse S, Brand NJ, Kyprianou P, Dhoot GK, Wade R, Arai M, Periasamy M, Yacoub MH, Barton PJ (1993) Troponin I gene expression during human cardiac development and in end-stage heart failure. Circ Res 72(5):932–938CrossRefPubMedGoogle Scholar
  16. 16.
    Corin SJ, Juhasz O, Zhu L, Conley P, Kedes L, Wade R (1994) Structure and expression of the human slow twitch skeletal muscle troponin I gene. J Biol Chem 269(14):10651–10659PubMedGoogle Scholar
  17. 17.
    Xu ZY, Yang H, Xiong YZ, Deng CY, Li FE, Lei MG, Zuo B (2010) Identification of three novel SNPs and association with carcass traits in porcine TNNI1 and TNNI2. Mol Biol Rep 37(7):3609–3613. doi: 10.1007/s11033-010-0010-9 CrossRefPubMedGoogle Scholar
  18. 18.
    Ma X, Zheng C, Hu Y, Wang L, Yang X, Jiang Z (2015) Dietary l-arginine supplementation affects the skeletal longissimus muscle proteome in finishing pigs. PLoS One 10(1):e0117294. doi: 10.1371/journal.pone.0117294 CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    van der Pol WL, Leijenaar JF, Spliet WG, Lavrijsen SW, Jansen NJ, Braun KP, Mulder M, Timmers-Raaijmakers B, Ratsma K, Dooijes D, van Haelst MM (2014) Nemaline myopathy caused byTNNT1 mutations in a Dutch pedigree. Mol Genet Genomic Med 2(2):134–137. doi: 10.1002/mgg3.52 CrossRefPubMedGoogle Scholar
  20. 20.
    Abdulhaq UN, Daana M, Dor T, Fellig Y, Eylon S, Schuelke M, Shaag A, Elpeleg O, Edvardson S (2015) Nemaline body myopathy caused by a novel mutation in Troponin T1 (TNNT1). Muscle Nerve. doi: 10.1002/mus.24885 PubMedGoogle Scholar
  21. 21.
    Wei B, Lu Y, Jin JP (2014) Deficiency of slow skeletal muscle troponin T causes atrophy of type I slow fibres and decreases tolerance to fatigue. J Physiol 592(Pt 6):1367–1380. doi: 10.1113/jphysiol.2013.268177 CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Zhang C, Wang G, Wang J, Ji Z, Liu Z, Pi X, Chen C (2013) Characterization and comparative analyses of muscle transcriptomes in Dorper and small-tailed Han sheep using RNA-Seq technique. PLoS ONE 8(8):e72686. doi: 10.1371/journal.pone.0072686 CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Kretsinger RH, Nockolds CE (1973) Carp muscle calcium-binding protein. II. Structure determination and general description. J Biol Chem 248(9):3313–3326PubMedGoogle Scholar
  24. 24.
    Xu ZY, Yang H, Li Y, Xiong YZ, Zuo B (2010) Temporal expression of TnI fast and slow isoforms in biceps femoris and masseter muscle during pig growth. Animal: 4(9):1541–1546. doi: 10.1017/S1751731110000649 CrossRefGoogle Scholar
  25. 25.
    Muroya S, Nakajima I, Chikuni K (2003) Amino acid sequences of multiple fast and slow troponin T isoforms expressed in adult bovine skeletal muscles. J Anim Sci 81(5):1185–1192CrossRefPubMedGoogle Scholar
  26. 26.
    Kitamura S, Muroya S, Nakajima I, Chikuni K, Nishimura T (2006) Amino acid sequences of porcine fast and slow troponin T isoforms. Biosci Biotechnol Biochem 70(3):726–728. doi: 10.1271/bbb.70.726 CrossRefPubMedGoogle Scholar
  27. 27.
    Kischel P, Bastide B, Muller M, Dubail F, Offredi F, Jin JP, Mounier Y, Martial J (2005) Expression and functional properties of four slow skeletal troponin T isoforms in rat muscles. Am J Physiol Cell Physiol 289(2):C437–C443. doi: 10.1152/ajpcell.00365.2004 CrossRefPubMedGoogle Scholar
  28. 28.
    Townsend PJ, Barton PJ, Yacoub MH, Farza H (1995) Molecular cloning of human cardiac troponin T isoforms: expression in developing and failing heart. J Mol Cell Cardiol 27(10):2223–2236CrossRefPubMedGoogle Scholar
  29. 29.
    Penny IF, Dransfield E (1979) Relationship between toughness and troponin T in conditioned beef. Meat Sci 3(2):135–141. doi: 10.1016/0309-1740(79)90015-9 CrossRefPubMedGoogle Scholar
  30. 30.
    Saggin L, Ausoni S, Gorza L, Sartore S, Schiaffino S (1988) Troponin T switching in the developing rat heart. J Biol Chem 263(34):18488–18492PubMedGoogle Scholar
  31. 31.
    Saggin L, Gorza L, Ausoni S, Schiaffino S (1989) Troponin I switching in the developing heart. J Biol Chem 264(27):16299–16302PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Yan Sun
    • 1
  • Guizhi Wang
    • 1
  • Zhibin Ji
    • 1
  • Tianle Chao
    • 1
  • Zhaohua Liu
    • 1
  • Xiaolong Wang
    • 1
  • Guanqing Liu
    • 1
  • Changhao Wu
    • 1
  • Jianmin Wang
    • 1
  1. 1.Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary MedicineShandong Agricultural UniversityTaianPeople’s Republic of China

Personalised recommendations