Advertisement

Molecular Biology Reports

, Volume 42, Issue 9, pp 1409–1417 | Cite as

Impact of DBP on histology and expression of HSP 70 in gill and liver tissue of Cyprinus carpio

  • Hizlan H. Agus
  • Belda Erkmen
  • Sibel Sümer
  • Aylin Sepici-Dinçel
  • Figen Erkoç
Manuscript

Abstract

Di-n-butyl phthalate (DBP) widely used plasticizer in the plastic industry, affects regulation of the endocrine system and causes toxicity in animals. In the present study, the aim was to study the toxic effects/damages of DBP exposure using Hsp70 levels and histopathological changes in Carp liver and gill. Hsp70 expression levels were assessed as specific biomarker of in vivo ecotoxicological stress. Carp (Cyprinus carpio) were exposed to sub-lethal concentration of DBP (di-n-butyl phthalate, 1 mg/L) for 4, 24 and 96 h. Gill and liver tissues were evaluated histopathologically and RNA quantifications for Hsp70 expression levels were carried out using a two-step real-time RT-PCR. In liver, a rapid but non-significant increase in mRNA levels in the first 4 h was observed. mRNA levels significantly increased up to 2–3 fold after 24 and 96 h (p < 0.05). However, irregular mRNA level changes were also recorded: Gill specific and time-dependent regulation of Hsp70 expression were 4–5 fold inhibition after 4 and 24 h (p < 0.05), then increased up to 4 fold after 96 h (p < 0.05). Histopathological findings support altered transcription results as: Epithelial lifting, hyperplasia, fusion of secondary lamellae, telangiectasis, passive hyperemia and hydropic degeneration. Significant alterations of Hsp70 levels were likely due to a tissue specific response against chemical stress, cellular damage and lesions due to DBP. Carp was found to be a suitable experimental model for toxicology, and Hsp70 mRNA levels are reliable, specific biomarkers.

Keywords

Phthalate Histopathology Ecotoxicology Biomarkers Hsp70 expression Cyprinus carpio 

Abbreviations

HSP70

Heat shock protein 70

DBP

Di-n-butyl phthalate

HSF-1

Heat shock factor-1

AhR

Aryl hydrocarbon receptor

Notes

Acknowledgments

The present study was partially supported by the: Gazi University, Research Fund, through project contract no: 04/2012-11 and The Turkish Scientific and Technological Research Council of Turkey, contract no: 212T185. Special thanks to Pınar Arslan, graduate student from Ankara University for her help with the experimentation.

Compliance with ethical standards

Conflict of Interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Huang P-C, Tien C-J, Sun Y-M et al (2008) Occurrence of phthalates in sediment and biota: relationship to aquatic factors and the biota-sediment accumulation factor. Chemosphere 73:539–544. doi: 10.1016/j.chemosphere.2008.06.019 CrossRefPubMedGoogle Scholar
  2. 2.
    Staples CAS, Dams WIJA, Arkerton THFP et al (1997) Aquatic toxicity of eighteen phthalate esters. Environ Toxicol Rev 16:875–891CrossRefGoogle Scholar
  3. 3.
    Van Wezel AP, van Vlaardingen P, Posthumus R et al (2000) Environmental risk limits for two phthalates, with special emphasis on endocrine disruptive properties. Ecotoxicol Environ Saf 46:305–321. doi: 10.1006/eesa.2000.1930 CrossRefPubMedGoogle Scholar
  4. 4.
    Clewell RA, Campbell JL, Ross SM et al (2010) Assessing the relevance of in vitro measures of phthalate inhibition of steroidogenesis for in vivo response. Toxicol Vitro 24:327–334. doi: 10.1016/j.tiv.2009.08.003 CrossRefGoogle Scholar
  5. 5.
    Thompson CJ, Ross SM, Gaido KW (2004) Di(n-butyl) phthalate impairs cholesterol transport and steroidogenesis in the fetal rat testis through a rapid and reversible mechanism. Endocrinology 145:1227–1237. doi: 10.1210/en.2003-1475 CrossRefPubMedGoogle Scholar
  6. 6.
    Krüger T, Long M, Bonefeld-Jørgensen EC (2008) Plastic components affect the activation of the aryl hydrocarbon and the androgen receptor. Toxicology 246:112–123. doi: 10.1016/j.tox.2007.12.028 CrossRefPubMedGoogle Scholar
  7. 7.
    Kim SJ, Park H, Yu SY et al (2009) Toxicogenomic effect of liver-toxic environmental chemicals in human hepatoma cell line. Mol Cell Toxicol 5:310–316Google Scholar
  8. 8.
    Arinç E, Sen A, Bozcaarmutlu A (2000) Cytochrome P4501A and associated mixed-function oxidase induction in fish as a biomarker for toxic carcinogenic pollutants in the aquatic environment. Pure Appl Chem 72:985–994. doi: 10.1351/pac200072060985 CrossRefGoogle Scholar
  9. 9.
    Deane EE, Woo NYS (2011) Advances and perspectives on the regulation and expression of piscine heat shock proteins. Rev Fish Biol Fish 21:153–185. doi: 10.1007/s11160-010-9164-8 CrossRefGoogle Scholar
  10. 10.
    Fulladosa E, Deane E, Ng AHY et al (2006) Stress proteins induced by exposure to sublethal levels of heavy metals in sea bream (Sparus sarba) blood cells. Toxicol In Vitro 20:96–100. doi: 10.1016/j.tiv.2005.06.005 CrossRefPubMedGoogle Scholar
  11. 11.
    Planelló R, Martínez-Guitarte JL, Morcillo G (2008) The endocrine disruptor bisphenol A increases the expression of HSP70 and ecdysone receptor genes in the aquatic larvae of Chironomus riparius. Chemosphere 71:1870–1876. doi: 10.1016/j.chemosphere.2008.01.033 CrossRefPubMedGoogle Scholar
  12. 12.
    Vijayan MM, Pereira C, Kruzynski G, Iwama GK (1998) Sublethal concentrations of contaminant induce the expression of hepatic heat shock protein 70 in two salmonids. Aquat Toxicol 40:101–108CrossRefGoogle Scholar
  13. 13.
    Ali KS, Dorgai L, Ábrahám M, Hermesz E (2003) Tissue- and stressor-specific differential expression of two hsc70 genes in carp. Biochem Biophys Res Commun 307:503–509. doi: 10.1016/S0006-291X(03)01206-3 CrossRefPubMedGoogle Scholar
  14. 14.
    Xing H, Li S, Wang X et al (2013) Effects of atrazine and chlorpyrifos on the mRNA levels of HSP70 and HSC70 in the liver, brain, kidney and gill of common carp (Cyprinus carpio L.). Chemosphere 90:910–916. doi: 10.1016/j.chemosphere.2012.06.028 CrossRefPubMedGoogle Scholar
  15. 15.
    Kregel KC (2002) Heat shock proteins: modifying factors in physiological stress responses and acquired thermotolerance. J Appl Physiol 92:2177–2186. doi: 10.1152/japplphysiol.01267.2001 CrossRefPubMedGoogle Scholar
  16. 16.
    Chen C, Zhou Q, Liu S, Xiu Z (2011) Acute toxicity, biochemical and gene expression responses of the earthworm Eisenia fetida exposed to polycyclic musks. Chemosphere 83:1147–1154. doi: 10.1016/j.chemosphere.2011.01.006 CrossRefPubMedGoogle Scholar
  17. 17.
    Mallatt J (1985) Fish gill structural changes induced by toxicants and other irritants: a statistical review. Can J Fish Aquat Sci 42:630–648. doi: 10.1139/f85-083 CrossRefGoogle Scholar
  18. 18.
    Aoki KA, Harris CA, Katsiadaki I, Sumpter JP (2011) Evidence suggesting that di-n-butyl phthalate has anti-androgenic effects in fish. Environ Toxicol Chem 30:1338–1345. doi: 10.1002/etc.502 CrossRefPubMedGoogle Scholar
  19. 19.
    Puerto M, Gutiérrez-Praena D, Prieto AI, Pichardo S, Jos A, Miguel-Carrasco JL (2011) Subchronic effects of cyanobacterial cells on the transcription of antioxidant enzyme genes in tilapia (Oreochromis niloticus). Ecotoxicology 20:479–490. doi: 10.1007/s10646-011-0600-x CrossRefPubMedGoogle Scholar
  20. 20.
    Lukin A, Sharova J, Belicheva L, Camus L (2011) Assessment of fish health status in the Pechora river: effects of contamination. Ecotoxicol Environ Saf 74:355–365. doi: 10.1016/j.ecoenv.2010.10.022 CrossRefPubMedGoogle Scholar
  21. 21.
    Abdel-Moneim AM, Al-Kahtani MA, Elmenshawy OM (2012) Histopathological biomarkers in gills and liver of Oreochromis niloticus from polluted wetland environments, Saudi Arabia. Chemosphere 88:1028–1035. doi: 10.1016/j.chemosphere.2012.04.001 CrossRefPubMedGoogle Scholar
  22. 22.
    Van Dyk JC, Pieterse GM (2008) A histo-morphological study of the testis of the sharptooth catfish (Clarias gariepinus) as reference for future toxicological assessments. J Appl Ichthyol 24:415–422. doi: 10.1111/j.1439-0426.2008.01127.x CrossRefGoogle Scholar
  23. 23.
    Van Dyk JC, Marchand MJ, Smit NJ, Pieterse GM (2009) A histology-based fish health assessment of four commercially and ecologically important species from the Okavango Delta panhandle, Botswana. Afr J Aquat Sci 34:273–282CrossRefGoogle Scholar
  24. 24.
    Rajeshkumar S, Munuswamy N (2011) Impact of metals on histopathology and expression of HSP 70 in different tissues of Milk fish (Chanos chanos) of Kaattuppalli Island, South East Coast, India. Chemosphere 83:415–421. doi: 10.1016/j.chemosphere.2010.12.086 CrossRefPubMedGoogle Scholar
  25. 25.
    Agamy E (2013) Impact of laboratory exposure to light Arabian crude oil, dispersed oil and dispersant on the gills of the juvenile brown spotted grouper (Epinephelus chlorostigma): a histopathological study. Marine Environmental Research 86:46–55. doi: 10.1016/j.marenvres.2013.02.010 CrossRefPubMedGoogle Scholar
  26. 26.
    Authman MMN, Abbas WT, Gaafar AY (2012) Metals concentrations in Nile tilapia Oreochromis niloticus from illegal fish farm in Al-Minufiya Province, Egypt, and their effects on some tissues structures. Ecotoxicol Environ Saf 84:163–172. doi: 10.1016/j.ecoenv.2012.07.005 CrossRefPubMedGoogle Scholar
  27. 27.
    Poleksic V, Mitrovic-Tutundzic V (1994) Fish gills as amonitor of sublethal and chronic effects of pollution. In: Muller R, Lloyd R (eds) Sublethal and Chronic effects of pollutants on freshwater fish. Fishing News Books, Oxford, pp 339–352Google Scholar
  28. 28.
    Schwaiger J, Wanke R, Adam S et al (1997) The use of histopathological indicators to evaluate contaminant-related stress in fish. J Aquat Ecosyst Stress Recover 6:75–86CrossRefGoogle Scholar
  29. 29.
    Heath AG (1995) Water pollution and fish physiology, 2nd edn. CRC Press, Boca Raton, p 384Google Scholar
  30. 30.
    Costa PM, Diniz MS, Caeiro S et al (2009) Histological biomarkers in liver and gills of juvenile Solea senegalensis exposed to contaminated estuarine sediments: a weighted indices approach. Aquat Toxicol 92:202–212. doi: 10.1016/j.aquatox.2008.12.009 CrossRefPubMedGoogle Scholar
  31. 31.
    Van Dyk JC, Pieterse GM, van Vuren JHJ (2007) Histological changes in the liver of Oreochromis mossambicus (Cichlidae) after exposure to cadmium and zinc. Ecotoxicol Environ Saf 66:432–440. doi: 10.1016/j.ecoenv.2005.10.012 CrossRefPubMedGoogle Scholar
  32. 32.
    Hinton DE, Lauren DJ (1990) Liver structural alterations accompanying chronic toxicity in fishes potential biomarkers of exposure. In: McCarthy JF, Shugart LR (eds) Biomarkers of environmental contamination. Lewis Publishers, Boca Raton, pp 17–57Google Scholar
  33. 33.
    Velmurugan B, Selvanayagam M, Cengiz EI, Unlu E (2009) Histopathological changes in the gill and liver tissues of freshwater fish, Cirrhinus mrigala exposed to dichlorvos. Braz Arch Biol Technol 52:1291–1296CrossRefGoogle Scholar
  34. 34.
    Simpkins AM, Tatum TE, Cardin DL, Wolf WC (2013) Metallothionein and heat-shock protein 70 induction in caged and wild fathead minnows (Pimephales promelas) exposed to the Ouachita River, Louisiana. J Toxicol Environ Health Part A 76:98–106. doi: 10.1080/15287394.2013.738174 CrossRefPubMedGoogle Scholar
  35. 35.
    Sen A, Ulutas OK, Tutuncu B et al (2010) Determination of 7-ethoxyresorufin-o-deethylase (EROD) induction in leaping mullet (Liza saliens) from the highly contaminated Aliaga Bay, Turkey. Environ Monit Assess 165:87–96. doi: 10.1007/s10661-009-0928-3 CrossRefPubMedGoogle Scholar
  36. 36.
    Deane EE, Woo NYS (2006) Impact of heavy metals and organochlorines on hsp70 and hsc70 gene expression in black sea bream fibroblasts. Aquat Toxicol 79:9–15. doi: 10.1016/j.aquatox.2006.04.009 CrossRefPubMedGoogle Scholar
  37. 37.
    Silver JT, Noble EG (2012) Regulation of survival gene hsp70. Cell Stress Chaperones 17:1–9. doi: 10.1007/s12192-011-0290-6 PubMedCentralCrossRefPubMedGoogle Scholar
  38. 38.
    Parveen M, Inoue A, Ise R et al (2008) Evaluation of estrogenic activity of phthalate esters by gene expression profiling using a focused microarray (EstrArray). Environ Toxicol Chem 27:1416–1425. doi: 10.1897/07-399 CrossRefPubMedGoogle Scholar
  39. 39.
    Kukreja RC, Kontos MC, Loesser KE et al (1994) Oxidant stress increases heat shock protein 70 mRNA in isolated perfused rat heart. Am J Physiol Heart Circ Physiol 267:H2213–H2219Google Scholar
  40. 40.
    Jin Y, Zhang X, Shu L et al (2010) Oxidative stress response and gene expression with atrazine exposure in adult female zebrafish (Danio rerio). Chemosphere 78:846–852. doi: 10.1016/j.chemosphere.2009.11.044 CrossRefPubMedGoogle Scholar
  41. 41.
    Barrera G (2012) Oxidative stress and lipid peroxidation products in cancer progression and therapy. ISRN Oncol 2012:1–22. doi: 10.5402/2012/137289 CrossRefGoogle Scholar
  42. 42.
    Zhou D, Wang H, Zhang J (2011) Di-n-butyl phthalate (DBP) exposure induces oxidative stress in epididymis of adult rats. Toxicol Ind Health 27:65–71. doi: 10.1177/0748233710381895 CrossRefPubMedGoogle Scholar
  43. 43.
    Xu H, Shao X, Zhang Z et al (2013) Oxidative stress and immune related gene expression following exposure to di-n-butyl phthalate and diethyl phthalate in zebrafish embryos. Ecotoxicol Environ Saf 93:39–44. doi: 10.1016/j.ecoenv.2013.03.038 CrossRefPubMedGoogle Scholar
  44. 44.
    Papaconstantinou AD, Fisher BR, Umbreit TH et al (2002) Increases in mouse uterine heat shock protein levels are a sensitive and specific response to uterotrophic agents. Environ Health Perspect 110:1207–1212PubMedCentralCrossRefPubMedGoogle Scholar
  45. 45.
    Schett G, Steiner CW, Gröger M et al (1999) Activation of Fas inhibits heat-induced activation of Hsf1 and up-regulation of Hsp70. FASEB 13:833–842Google Scholar
  46. 46.
    Sreedhar AS, Csermely P (2004) Heat shock proteins in the regulation of apoptosis: new strategies in tumor therapy: a comprehensive review. Pharmacol Ther 101:227–257. doi: 10.1016/j.pharmthera.2003.11.004 CrossRefPubMedGoogle Scholar
  47. 47.
    Bijur GN, Jope RS (2000) Opposing actions of phosphatidylinositol 3-kinase and glycogen synthase kinase-3beta in the regulation of HSF-1 activity. J Neurochem 75:2401–2408. doi: 10.1111/j.1471-4159.2007.04792.x CrossRefPubMedGoogle Scholar
  48. 48.
    Weber LP, Janz DM (2001) Effect of beta-naphthoflavone and dimethylbenz[a]anthracene on apoptosis and HSP70 expression in juvenile channel catfish (Ictalurus punctatus) ovary. Aquat Toxicol 54:39–50. doi: 10.1016/S0166-445X(00)00179-X CrossRefPubMedGoogle Scholar
  49. 49.
    Gupta SC, Sharma A, Mishra M et al (2010) Heat shock proteins in toxicology: how close and how far? Life Sci 86:377–384. doi: 10.1016/j.lfs.2009.12.015 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.Department of BiologyHacettepe UniversityAnkaraTurkey
  2. 2.Department of BiologyAksaray UniversityAksarayTurkey
  3. 3.Faculty of MedicineGazi UniversityAnkaraTurkey
  4. 4.Department of Biology EducationGazi UniversityAnkaraTurkey

Personalised recommendations