Molecular Biology Reports

, Volume 42, Issue 6, pp 1059–1067 | Cite as

Species cross-amplification, identification and genetic variation of 17 species of deer (Cervidae) with microsatellite and mitochondrial DNA from antlers

  • G. Sebastian Hoffmann
  • Jes Johannesen
  • Eva Maria Griebeler


Strong anthropogenic impact has caused 28 of the currently recognized 55 species of deer (Cervidae) to be listed on the IUCN Red List. Particular threats to vulnerable species include habitat deterioration and hybridization with alien, introduced species. The scarcity of many species has severely hampered genetic analyses of their populations, including the detection of loci for cross-species amplification. Because deer antlers are shed and re-grown annually, antlers offer the possibility for non-invasive genetic sampling of large individual numbers, and may provide material for reference genotyping from historical samples stored in zoos, museums and trophy collections of rare and extinct species/populations. In this paper, we report cross-species amplification of 19 nuclear microsatellite loci and the amplification of 16S mtDNA for barcoding from nearly a third of all deer species worldwide based on high quality DNA extracted from antler bone up to 40 years old. Phylogenetic analysis based on mtDNA of seventeen species and five subspecies corroborate previously published phylogenetic data, thus confirming the specific resolution of the DNA extraction methodology.


Non-invasive sampling Barcoding Artiodactyla Phylogeny Population genetics Museum samples 



We are grateful to Christian Kern and the “Tierpark Berlin” for supporting the sampling of specimens. We thank Silke Gabel-Scheurich, Dagmar Klebsch and Ariana Macon for technical assistance. We are also very grateful to Rebecca Nagel for linguistic improvement of the manuscript. This manuscript is part of the Ph.D. thesis of GSH.

Supplementary material

11033_2014_3845_MOESM1_ESM.docx (79 kb)
Supplementary material 1 (DOCX 80 kb)
11033_2014_3845_MOESM2_ESM.xlsx (35 kb)
Supplementary material 2 (XLSX 35 kb)


  1. 1.
    Gilbert C, Ropiquet A, Hassanin A (2006) Mitochondrial and nuclear phylogenies of Cervidae (Mammalia, Ruminantia): systematics, morphology, and biogeography. Mol Phylogenet Evol 40(1):101–117. doi: 10.1016/j.ympev.2006.02.017 CrossRefPubMedGoogle Scholar
  2. 2.
    Grubb P (1993) Order artiodactyla. In: Wemmer CM (ed) Mammal species of the world: a taxonomic and geographic reference, 2nd edn. JHU Press, Maryland, pp 377–414Google Scholar
  3. 3.
    Mainka SA, Mills JA (1995) Wildlife and traditional Chinese medicine—supply and demand for wildlife species. J Zoo Wildl Med 26(2):193–200Google Scholar
  4. 4.
    Galindoleal C, Weber M (1994) Translocation of deer subspecies—reproductive implications. Wildl Soc Bull 22(1):117–120Google Scholar
  5. 5.
    Geist V (1988) How markets in wildlife meat and parts and the sale of hunting privileges jeopardize wildlife conservation. Conserv Biol 2(1):15–26. doi: 10.1111/j.1523-1739.1988.tb00331.x CrossRefGoogle Scholar
  6. 6.
    Geist V (1992) Deer ranching for products and paid hunting: threat to conservation and biodiversity by luxury markets. The biology of deer. Springer, New York, pp 554–561CrossRefGoogle Scholar
  7. 7.
    Lower VPW, Gardiner AS (1975) Hybridization between red deer (Cervus-elaphus) and sika deer (Cervus-nippon) with particular reference to stocks in NW England. J Zool 177(4):553–566Google Scholar
  8. 8.
    Senn HV, Pemberton JM (2009) Variable extent of hybridization between invasive sika (Cervus nippon) and native red deer (C-elaphus) in a small geographical area. Mol Ecol 18(5):862–876. doi: 10.1111/j.1365-294X.2008.04051.x CrossRefPubMedGoogle Scholar
  9. 9.
    Janis CM, Scott KM (1987) The interrelationships of higher ruminant families with special emphasis on the members of the cervoidea. Am Mus Novit 2893:1–86Google Scholar
  10. 10.
    Li CY, Suttie JM (2001) Deer antlerogenic periosteum: a piece of postnatally retained embryonic tissue? Anat Embryol 204(5):375–388. doi: 10.1007/s004290100204 CrossRefPubMedGoogle Scholar
  11. 11.
    Piggott MP, Taylor AC (2003) Remote collection of animal DNA and its applications in conservation management and understanding the population biology of rare and cryptic species. Wildl Res 30(1):1–13. doi: 10.1071/wr02077 CrossRefGoogle Scholar
  12. 12.
    Broquet T, Ménard N, Petit E (2007) Noninvasive population genetics: a review of sample source, diet, fragment length and microsatellite motif effects on amplification success and genotyping error rates. Conserv Genet 8(1):249–260. doi: 10.1007/s10592-006-9146-5 CrossRefGoogle Scholar
  13. 13.
    Hoffmann GS, Griebeler EM (2013) An improved high yield method to obtain microsatellite genotypes from red deer antlers up to 200 years old. Mol Ecol Resour 13(3):440–446. doi: 10.1111/1755-0998.12068 CrossRefPubMedGoogle Scholar
  14. 14.
    Bruford MW, Wayne RK (1993) Microsatellites and their application to population genetic studies. Curr Opin Genet Dev 3(6):939–943. doi: 10.1016/0959-437x(93)90017-j CrossRefPubMedGoogle Scholar
  15. 15.
    Bruford MW, Cheesman DJ, Coote T, Green HA, Haines SA, O’Ryan C, Williams TR (1996) Microsatellites and their application to conservation genetics. Molecular genetic approaches in conservation. Oxford University Press, New York, pp 278–297Google Scholar
  16. 16.
    Goodman SJ, Barton NH, Swanson G, Abernethy K, Pemberton JM (1999) Introgression through rare hybridization: a genetic study of a hybrid zone between red and sika deer (genus Cervus) in Argyll. Scotl Genet 152(1):355–371Google Scholar
  17. 17.
    Bonnet A, Thevenon S, Maudet F, Maillard JC (2002) Efficiency of semi-automated fluorescent multiplex PCRs with 11 microsatellite markers for genetic studies of deer populations. Anim Genet 33(5):343–350. doi: 10.1046/j.1365-2052.2002.00873.x CrossRefPubMedGoogle Scholar
  18. 18.
    Kuehn R, Schroeder W, Pirchner F, Rottmann O (2003) Genetic diversity, gene flow and drift in Bavarian red deer populations (Cervus elaphus). Conserv Genet 4(2):157–166. doi: 10.1023/a:1023394707884 CrossRefGoogle Scholar
  19. 19.
    Poetsch M, Seefeldt S, Maschke M, Lignitz E (2001) Analysis of microsatellite polymorphism in red deer, roe deer, and fallow deer—possible employment in forensic applications. Forensic Sci Int 116(1):1–8. doi: 10.1016/s0379-0738(00)00337-6 CrossRefPubMedGoogle Scholar
  20. 20.
    Goodman SJ, Tamate HB, Wilson R, Nagata J, Tatsuzawa S, Swanson GM, Pemberton JM, McCullough DR (2001) Bottlenecks, drift and differentiation: the population structure and demographic history of sika deer (Cervus nippon) in the Japanese archipelago. Mol Ecol 10(6):1357–1370. doi: 10.1046/j.1365-294X.2001.01277.x CrossRefPubMedGoogle Scholar
  21. 21.
    Gaur A, Singh A, Arunabala V, Umapathy G, Shailaja K, Singh L (2003) Development and characterization of 10 novel microsatellite markers from Chital deer (Cervus axis) and their cross-amplification in other related species. Mol Ecol Notes 3(4):607–609. doi: 10.1046/j.1471-8286.2003.00528.x CrossRefGoogle Scholar
  22. 22.
    Cronin MA, Palmisciano DA, Vyse ER, Cameron DG (1991) Mitochondrial DNA in wildlife forensic science: species identification of tissues. Wildl Soc Bull: 94–105Google Scholar
  23. 23.
    Hebert PDN, Cywinska A, Ball SL, DeWaard JR (2003) Biological identifications through DNA barcodes. Proc R Soc B Biol Sci 270(1512):313–321. doi: 10.1098/rspb.2002.2218 CrossRefGoogle Scholar
  24. 24.
    Yan D, Luo JY, Han YM, Peng C, Dong XP, Chen SL, Sun LG, Xiao XH (2013) Forensic DNA barcoding and bio-response studies of animal horn products used in traditional medicine. PLoS One 8(2):e5854. doi: 10.1371/journal.pone.0055854 Google Scholar
  25. 25.
    Cronin MA (2006) A proposal to eliminate redundant terminology for intra-species groups. Wildl Soc Bull 34(1):237–241 10.2193/0091-7648(2006) 34[237:aptert];2CrossRefGoogle Scholar
  26. 26.
    Ball RM, Avise JC (1992) Mitochondrial-dna phylogeographic differentiation among avian populations and the evolutionary significance of subspecies. The Auk 109(3):626–636Google Scholar
  27. 27.
    Schuelke M (2000) An economic method for the fluorescent labeling of PCR fragments. Nat Biotechnol 18(2):233–234. doi: 10.1038/72708 CrossRefPubMedGoogle Scholar
  28. 28.
    Guha S, Goyal SP, Kashyap VK (2006) Genomic variation in the mitochondrially encoded cytochrome b (MT-CYB) and 16S rRNA (MT-RNR2) genes: characterization of eight endangered Pecoran species. Anim Genet 37(3):262–265. doi: 10.1111/j.1365-2052.2006.01421.x CrossRefPubMedGoogle Scholar
  29. 29.
    Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28(10):2731–2739. doi: 10.1093/molbev/msr121 CrossRefPubMedCentralPubMedGoogle Scholar
  30. 30.
    Paabo S, Poinar H, Serre D, Jaenicke-Despres V, Hebler J, Rohland N, Kuch M, Krause J, Vigilant L, Hofreiter M (2004) Genetic analyses from ancient DNA. Annu Rev Genet 38:645–679. doi: 10.1146/annurev.genet.37.110801.143214 CrossRefPubMedGoogle Scholar
  31. 31.
    Woods JG, Paetkau D, Lewis D, McLellan BN, Proctor M, Strobeck C (1999) Genetic tagging of free-ranging black and brown bears. Wildl Soc Bull 27(3):616–627Google Scholar
  32. 32.
    Paetkau D (2003) An empirical exploration of data quality in DNA-based population inventories. Mol Ecol 12(6):1375–1387. doi: 10.1046/j.1365-294X.2003.01820.x CrossRefPubMedGoogle Scholar
  33. 33.
    Felmer DR, Sagredo DB, Chavez RR, Iraira HS, Folch MC, Parra GL, Catrileo SA, Ortiz LM (2008) Implementation of a molecular system for traceability of beef based on microsatellite markers. Chil J Agric Res 68(4):342–351CrossRefGoogle Scholar
  34. 34.
    Teletchea F, Bernillon J, Duffraisse M, Laudet V, Hanni C (2008) Molecular identification of vertebrate species by oligonucleotide microarray in food and forensic samples. J Appl Ecol 45(3):967–975. doi: 10.1111/j.1365-2664.2007.01415.x CrossRefGoogle Scholar
  35. 35.
    Meyer CP, Paulay G (2005) DNA barcoding: error rates based on comprehensive sampling. PLoS Biol 3(12):2229–2238. doi: 10.1371/journal.pbio.0030422 CrossRefGoogle Scholar
  36. 36.
    Cronin MA, Vyse ER, Cameron DG (1988) Genetic-relationships between mule deer and white-tailed deer in montana. J Wildl Manag 52(2):320–328. doi: 10.2307/3801243 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • G. Sebastian Hoffmann
    • 1
  • Jes Johannesen
    • 1
  • Eva Maria Griebeler
    • 1
  1. 1.Department of Ecology, Institute of ZoologyJohannes Gutenberg-University of MainzMainzGermany

Personalised recommendations