Molecular Biology Reports

, Volume 42, Issue 3, pp 699–704 | Cite as

Single nucleotide polymorphisms of the FTO gene and cancer risk: an overview

  • Marta Elena Hernández-Caballero
  • José Alfredo Sierra-Ramírez


The FTO (fat mass and obesity-associated) gene has a strong linkage disequilibrium block, within which SNPs have been identified that are involved in the development of obesity. Recently some of these variants have also been associated with cancer. However, identification of the possible mechanisms that could explain these associations has proven to be elusive. It has been found that FTO polymorphisms can regulate the expression of genes at large kilobases of distance as well as the expression of the FTO gene itself, and regions for transcription factor binding. To date it has been observed that variants rs9939609, rs17817449, rs8050136, rs1477196, rs6499640, rs16953002, rs11075995 and rs1121980 are associated with the risk of developing cancer. Some studies have produced negative results when comparing the same polymorphisms, but make a simple association between polymorphic variants and cancer, have proved difficult because this relation is by nature multifactorial. A certain degree of variation resulting from the improper design of studies or processing of data can lead to erroneous conclusions. However, it is now unquestionable that certain FTO polymorphisms regulate genetic expression related to cancer susceptibility, although this field is just beginning to be understood.


SNP FTO Cancer risk factors Obesity 


  1. 1.
    Sur I, Tuupanen S, Whitington T et al (2013) Lessons from functional analysis of genome-wide association studies. Cancer Res 73:4180–4184CrossRefPubMedGoogle Scholar
  2. 2.
    Finucane MM, Stevens GA, Cowan MJ et al (2011) National, regional, and global trends in body-mass index since 1980: systematic analysis of health examination surveys and epidemiological with 960 country-years and 9.1 million participants. Global burden of metabolic risk factors of chronic diseases collaborating group (Body Mass Index). Lancet 337:557–567CrossRefGoogle Scholar
  3. 3.
    Haidar YM, Cosman BC (2011) Obesity epidemiology. Clin Colon Rectal Surg 24:205–210CrossRefPubMedCentralPubMedGoogle Scholar
  4. 4.
    Calle EE, Kaaks R (2004) Overweight, obesity and cancer: epidemiological evidence and proposed mechanisms. Nat Rev Cancer 4:579–591CrossRefPubMedGoogle Scholar
  5. 5.
    Ligibel JA, Strickler HD (2013) Obesity and its impact on breast cancer. Am Soc Clin Oncol Educ Book 2013:52–59CrossRefGoogle Scholar
  6. 6.
    Calle EE, Rodriguez C, Walker-Thurmond K, Thun MJ (2003) Overweight, obesity, and mortality from cancer in a prospective studied cohort of U.S. adults. N Engl J Med 348:1625–1638CrossRefPubMedGoogle Scholar
  7. 7.
    Sarfstein R, Friedman Y, Attias-Geva Z et al (2013) Metformin downregulates the insulin/IGF-I signaling pathway and inhibits different uterine serous carcinoma (USC) cells proliferation and migration in p53-dependent or -independent manners. PLoS One 8:e61537CrossRefPubMedCentralPubMedGoogle Scholar
  8. 8.
    Huang Z, Hankinson SE, Colditz GA et al (1997) Dual effects of weight and weight gain on breast cancer risk. JAMA 278:1407–1411CrossRefPubMedGoogle Scholar
  9. 9.
    Trentham-Dietz A, Newcomb PA, Storer BE et al (1997) Body size and risk of breast cancer. Am J Epidemiol 145:1011–1019CrossRefPubMedGoogle Scholar
  10. 10.
    Anderson GL, Chlebowski RT, Aragaki AK et al (2012) Conjugated equine oestrogen and breast cancer incidence and mortality in postmenopausal women with hysterectomy: extended follow-up of the Women’s Health Initiative randomised placebo-controlled trial. Lancet Oncol 13:476–486CrossRefPubMedCentralPubMedGoogle Scholar
  11. 11.
    Scuteri A, Sanna S, Chen WM et al (2007) Genome-wide association scan shows genetic variants in the FTO gene are associated with obesity-related traits. PLoS Genet 3:e115CrossRefPubMedCentralPubMedGoogle Scholar
  12. 12.
    Herrera BM, Lindgren CM (2010) The genetics of obesity. Curr Diab Rep 10:498–505CrossRefPubMedCentralPubMedGoogle Scholar
  13. 13.
    Frayling TM, Timpson NJ, Weedon NM et al (2007) A common variant in the FTO gene is associated with body mass index and predisposes to childhood and adult obesity. Science 316:889–894CrossRefPubMedCentralPubMedGoogle Scholar
  14. 14.
    Speliotes EK, Willer CJ, Berndt SI et al (2010) Association analyses of 249,796 individuals reveal 18 new loci associated with body mass index. Nat Genet 42:937–948CrossRefPubMedCentralPubMedGoogle Scholar
  15. 15.
    Stratigopoulos G, Padilla SL, LeDuc CA et al (2008) Regulation of Fto/Ftm gene expression in mice and humans. Am J Physiol Regul Integr Comp Physiol 294:R1185–R1196CrossRefPubMedCentralPubMedGoogle Scholar
  16. 16.
    Boissel S, Reish O, Proulx K et al (2009) Loss-of-function mutation in the dioxygenaseencoding FTO gene causes severe growth retardation and multiple malformations. Am J Hum Genet 85:106–111CrossRefPubMedCentralPubMedGoogle Scholar
  17. 17.
    Meyre D, Proulx K, Kawagoe-Takaki H et al (2010) Prevalence of loss of function FTO mutations in lean and obese individuals. Diabetes 59:311–318CrossRefPubMedCentralPubMedGoogle Scholar
  18. 18.
    Chorley BN, Wang X, Campbell MR et al (2008) Discovery and verification of functional single nucleotide polymorphisms in regulatory genomic regions: current and developing technologies. Mutat Res 659:147–157CrossRefPubMedCentralPubMedGoogle Scholar
  19. 19.
    Jowett JB, Curran JE, Johnson MP, Carless MA, Göring HH, Dyer TD et al (2010) Genetic variation at the FTO locus influences RBL2 gene expression. Diabetes 59(3):726–732CrossRefPubMedCentralPubMedGoogle Scholar
  20. 20.
    Berulava T, Horsthemke B (2010) Comment on: Jowett et al. (2010) Genetic variation at the FTO locus influences RBL2 gene expression. Diabetes; 59:726–732. Diabetes 59:e9CrossRefPubMedGoogle Scholar
  21. 21.
    Berulava T, Horsthemke B (2010) The obesity-associated SNPs in intron 1 of the FTO gene affect primary transcript levels. Eur J Hum Genet 18:1054–1056CrossRefPubMedCentralPubMedGoogle Scholar
  22. 22.
    Smemo S, Tena JJ, Kim KH, Gamazon ER, Sakabe NJ, Gómez-Marín C et al (2014) Obesity-associated variants within FTO form long-range functional connections with IRX3. Nature 507:371–375CrossRefPubMedCentralPubMedGoogle Scholar
  23. 23.
    Brennan P, McKay J, Moore L et al (2009) Obesity and cancer: Mendelian randomization approach utilizing the FTO genotype. Int J Epidemiol 38:971–975CrossRefPubMedCentralPubMedGoogle Scholar
  24. 24.
    Lewis SJ, Murad A, Chen L et al (2010) Associations between an obesity related genetic variant (FTO rs9939609) and prostate cancer risk. PLoS One 5:e13485CrossRefPubMedCentralPubMedGoogle Scholar
  25. 25.
    Nock NL, Plummer SJ, Thompson CL et al (2011) FTO polymorphisms are associated with adult body mass index (BMI) and colorectal adenomas in African-Americans. Carcinogenesis 32:748–756CrossRefPubMedCentralPubMedGoogle Scholar
  26. 26.
    Hubacek JA, Dlouha D (2012) The risk of sporadic colorectal cancer development is not influenced by fat mass and obesity related gene polymorphism in Slavs. Eur J Intern Med 23:e175–e176CrossRefPubMedGoogle Scholar
  27. 27.
    Tarabra E, Actis GC, Fadda M et al (2012) The obesity gene and colorectal cancer risk: a population study in Northern Italy. Eur J Intern Med 23:65–69CrossRefPubMedGoogle Scholar
  28. 28.
    Lim U, Wilkens LR, Monroe KR et al (2012) Susceptibility variants for obesity and colorectal cancer risk: the multiethnic cohort and PAGE studies. Int J Cancer 131:E1038–E1043CrossRefPubMedCentralPubMedGoogle Scholar
  29. 29.
    Tang H, Dong X, Hassan M et al (2011) Body mass index and obesity- and diabetes-associated genotypes and risk for pancreatic cancer. Cancer Epidemiol Biomarkers Prev 20:779–792CrossRefPubMedCentralPubMedGoogle Scholar
  30. 30.
    Pierce BL, Austin MA, Ahsan H (2011) Association study of type 2 diabetes genetic susceptibility variants and risk of pancreatic cancer: an analysis of PanScan-I data. Cancer Causes Control 22:877–883CrossRefPubMedGoogle Scholar
  31. 31.
    Li G, Chen Q, Wang L, Ke D, Yuan Z (2012) Association between FTO gene polymorphism and cancer risk: evidence from 16,277 cases and 31,153 controls. Tumour Biol 33:1237–1243CrossRefPubMedGoogle Scholar
  32. 32.
    Lin Y, Ueda J, Yagyu K, Ishii H, Ueno M, Egawa N et al (2013) Association between variations in the fat mass and obesity-associated gene and pancreatic cancer risk: a case-control study in Japan. BMC Cancer 8(13):337CrossRefGoogle Scholar
  33. 33.
    Kitahara CM, Neta G, Pfeiffer RM et al (2012) Common obesity-related genetic variants and papillary thyroid cancer risk. Cancer Epidemiol Biomarkers Prev 21:2268–2271CrossRefPubMedCentralPubMedGoogle Scholar
  34. 34.
    Delahanty RJ, Beeghly-Fadiel A, Xiang YB et al (2011) Association of obesity-related genetic variants with endometrial cancer risk: a report from the Shanghai endometrial cancer genetics study. Am J Epidemiol 174:1115–1126CrossRefPubMedCentralPubMedGoogle Scholar
  35. 35.
    Lurie G, Gaudet MM, Spurdle AB et al (2011) The obesity-associated polymorphisms FTO rs9939609 and MC4R rs17782313 and endometrial cancer risk in non-Hispanic white women. PLoS One 6:e16756CrossRefPubMedCentralPubMedGoogle Scholar
  36. 36.
    Gaudet MM, Yang HP, Bosquet JG et al (2010) No association between FTO or HHEX and endometrial cancer risk. Cancer Epidemiol Biomarkers Prev 19:2106–2109CrossRefPubMedCentralPubMedGoogle Scholar
  37. 37.
    Brinton L, Swanson C (1992) Height and weight at various ages and risk of breast cancer. Ann Epidemiol 2:597–609CrossRefPubMedGoogle Scholar
  38. 38.
    Long J, Zhang B, Signorello LB et al (2013) Evaluating genome-wide association study-identified breast cancer risk variants in African-American women. PLoS One 8:e58350CrossRefPubMedCentralPubMedGoogle Scholar
  39. 39.
    Kaklamani V, Yi N, Sadim M et al (2011) The role of the fat mass and obesity associated gene (FTO) in breast cancer risk. BMC Med Genet 12:52CrossRefPubMedCentralPubMedGoogle Scholar
  40. 40.
    Kusinska R, Górniak P, Pastorczak A et al (2012) Influence of genomic variation in FTO at 16q12.2, MC4R at 18q22 and NRXN3 at 14q31 genes on breast cancer risk. Mol Biol Rep 39:2915–2919CrossRefPubMedCentralPubMedGoogle Scholar
  41. 41.
    Brooks JD, Bernstein L, Teraoka SN, Knight JA, Mellemkjær L, John EM et al (2012) Variation in genes related to obesity, weight, and weight change and risk of contralateral breast cancer in the WECARE Study population. Cancer Epidemiol Biomarkers Prev 21:2261–2267CrossRefPubMedCentralPubMedGoogle Scholar
  42. 42.
    Garcia-Closas M, Couch FJ, Lindstrom S et al (2013) Genome-wide association studies identify four ER negative-specific breast cancer risk loci. Nat Genet 45:392–8, 398e1-2Google Scholar
  43. 43.
    da Cunha PA, de Carlos Back LK, Sereia AF et al (2013) Interaction between obesity-related genes, FTO and MC4R, associated to an increase of breast cancer risk. Mol Biol Rep 40:6657–6664CrossRefPubMedGoogle Scholar
  44. 44.
    Iles MM, Law MH, Stacey SN et al (2013) A variant in FTO shows association with melanoma risk not due to BMI. Nat Genet 45:428–432CrossRefPubMedCentralPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Marta Elena Hernández-Caballero
    • 1
  • José Alfredo Sierra-Ramírez
    • 2
  1. 1.Facultad de MedicinaBenemérita Universidad Autónoma de PueblaPueblaMéxico
  2. 2.Sección de Estudios de Posgrado e Investigación, Escuela Superior de MedicinaInstituto Politécnico NacionalMéxicoMéxico

Personalised recommendations