Skip to main content

Advertisement

Log in

RETRACTED ARTICLE: Distinctive pathways characterize A. actinomycetemcomitans and P. gingivalis

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

This article was retracted on 18 August 2015

Abstract

The study aimed to compare the molecular mechanism of Porphuromonas gingivalis (P. gingivalis) and Aggregatibacter actinomycetemcomitans (A. actinomycetemcomitans). With microarray dataset (GSE9723) from Gene Expression Omnibus, differentially expressed genes (DEGs) were identified comparing normal cell samples with A. actinomycetemcomitans-infected and P. gingivalis-infected periodontitis cell samples, respectively (|logFC| > 1, p value <0.01), followed by hierarchical cluster analysis using Cluster software. Network topological features of A. actinomycetemcomitans-related and P. gingivalis-related protein–protein interaction networks, and background network, which included average shortest path length (ASPL), degree, closeness centrality (CC), eccentricity (EC), betweenness centrality (BC) and topological coefficient (TC) were compared using network analysis plugin of Cytoscape, followed by pathway enrichment analysis (p value <0.05) using FISHER hyper-geometric algorithm and calculation of pathway alter scores using LIMMA. Totally, 839 DEGs and 251 DEGs were screened for A. actinomycetemcomitans and P. gingivalis, respectively. A. actinomycetemcomitans-related network had lower ASPL, degree and EC but higher CC and TC (p < 0.01), while P. gingivalis-related network had lower EC but higher CC and BC (p < 0.01) compared to background network. P. gingivalis-related network had lower ASPL, degree and EC, but higher CC than the A. actinomycetemcomitans-related network (p < 0.05). A. actinomycetemcomitans was associated with the pathways relating to endothelial cells function, while neuroactive ligand–receptor interaction and MAPK pathways were important for P. gingivalis, which had higher alter scores in hematopoietic cell lineage, hypertrophic cardiomyopathy and arrhythmogenic right ventricular cardiomyopathy pathways than A. actinomycetemcomitans. Genes and pathways of the two pathogens were distinctive. The findings aided in preventing and treating relevant diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Tribble GD, Kerr JE, Wang B-Y (2013) Genetic diversity in the oral pathogen Porphyromonas gingivalis: molecular mechanisms and biological consequences. Future Microbiol 8:607–620

    Article  CAS  PubMed  Google Scholar 

  2. Han X, Larosa KB, Kawai T, Taubman MA (2014) DNA-based adaptive immunity protect host from infection-associated periodontal bone resorption via recognition of Porphyromonas gingivalis virulence component. Vaccine 32:297–303

    Article  CAS  PubMed  Google Scholar 

  3. Marchesan JT, Morelli T, Lundy SK et al (2012) Divergence of the systemic immune response following oral infection with distinct strains of Porphyromonas gingivalis. Mol Oral Microbiol 27:483–495

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Zhang W, Guo H, Jing H et al (2014) Lactoferrin stimulates osteoblast differentiation Through PKA and p38 pathways independent of Lactoferrin’s receptor LRP1. J Bone Miner Res 29:1232–1243

    Article  CAS  PubMed  Google Scholar 

  5. Bullon P, Cordero M, Quiles J, Morillo J, Del Carmen R-TM, Battino M (2011) Mitochondrial dysfunction promoted by Porphyromonas gingivalis lipopolysaccharide as a possible link between cardiovascular disease and periodontitis. Free Radic Biol Med 50:1336–1343

    Article  CAS  PubMed  Google Scholar 

  6. Kawamoto D, Ando E, Longo P, Nunes A, Wikström M, Mayer M (2009) Genetic diversity and toxic activity of Aggregatibacter actinomycetemcomitans isolates. Oral Microbiol Immunol 24:493–501

    Article  CAS  PubMed  Google Scholar 

  7. Silveira VRS, Nogueira MVB, Nogueira NAP, Lima V, Furlaneto FAC, Rego RO (2013) Leukotoxicity of Aggregatibacter actinomycetemcomitans in generalized aggressive periodontitis in Brazilians and their family members. J Appl Oral Sci 21:430–436

    Article  PubMed Central  PubMed  Google Scholar 

  8. Slots J (1976) The predominant cultivable organisms in juvenile periodontitis. Eur J Oral 84:1–10

    Article  CAS  Google Scholar 

  9. Ando-Suguimoto E, Da Silva M, Kawamoto D, Chen C, Dirienzo J, Mayer M (2014) The cytolethal distending toxin of Aggregatibacter actinomycetemcomitans inhibits macrophage phagocytosis and subverts cytokine production. Cytokine 66:46

    Article  CAS  PubMed  Google Scholar 

  10. Shaik-Dasthagirisaheb Y, Shen S, Genco C, Gibson F III (2012) Ageing and expression of TLR pathway associated genes in macrophages to Porphyromonas gingivalis challenge. J Immunol 188(55):26

    Google Scholar 

  11. Zhang P, Martin M, Michalek SM, Katz J (2005) Role of mitogen-activated protein kinases and NF-κB in the regulation of proinflammatory and anti-inflammatory cytokines by Porphyromonas gingivalis hemagglutinin B. Infect Immun 73:3990–3998

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Park S-R, Kim D-J, Han S-H et al (2014) Diverse toll-like receptors mediate cytokine production by Fusobacterium nucleatum and Aggregatibacter actinomycetemcomitans in macrophages. Infect Immun 82:1914–1920

    Article  PubMed Central  PubMed  Google Scholar 

  13. Vernal R, Leon R, Herrera D, Garcia-Sanz JA, Silva A, Sanz M (2008) Variability in the response of human dendritic cells stimulated with Porphyromonas gingivalis or Aggregatibacter actinomycetemcomitans. J Periodontal Res 43:689–697

    Article  CAS  PubMed  Google Scholar 

  14. Kelk P, Abd H, Claesson R, Sandström G, Sjöstedt A, Johansson A (2011) Cellular and molecular response of human macrophages exposed to Aggregatibacter actinomycetemcomitans leukotoxin. Cell Death Dis 2:e126

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Wang M, M-aK Shakhatreh, James D et al (2007) Fimbrial proteins of Porphyromonas gingivalis mediate in vivo virulence and exploit TLR2 and complement receptor 3 to persist in macrophages. J Immunol 179:2349–2358

    Article  CAS  PubMed  Google Scholar 

  16. Haraguchi A, Miura M, Fujise O, Hamachi T, Nishimura F (2014) Porphyromonas gingivalis gingipain is involved in the detachment and aggregation of Aggregatibacter actinomycetemcomitans biofilm. Mol Oral Microbiol 29:131–143

    Article  CAS  PubMed  Google Scholar 

  17. Handfield M, Mans JJ, Zheng G et al (2005) Distinct transcriptional profiles characterize oral epithelium–microbiota interactions. Cell Microbiol 7:811–823

    Article  CAS  PubMed  Google Scholar 

  18. Smyth GK (2005) LIMMA: linear models for microarray data. In: Bioinformatics and computational biology solutions using R and bioconductor. Springer, New York, pp 397–420

  19. Zhou J, Dong X, Zhou Q et al (2014) microRNA expression profiling of heart tissue during fetal development. Int J Mol Med 33:1250–1260

    CAS  PubMed  Google Scholar 

  20. Chatr-Aryamontri A, Breitkreutz B-J, Heinicke S et al (2013) The BioGRID interaction database: 2013 update. Nucleic Acids Res 41:D816–D823

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Saito R, Smoot ME, Ono K et al (2012) A travel guide to Cytoscape plugins. Nat Methods 9:1069–1076

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Nam H, Lee J, Lee D (2009) Computational identification of altered metabolism using gene expression and metabolic pathways. Biotechnol Bioeng 103:835–843

    Article  CAS  PubMed  Google Scholar 

  23. Kinloch AJ, Alzabin S, Brintnell W et al (2011) Immunization with Porphyromonas gingivalis enolase induces autoimmunity to mammalian α-enolase and arthritis in DR4-IE-transgenic mice. Arthritis Rheum 63:3818–3823

    Article  CAS  PubMed  Google Scholar 

  24. Brage M, Holmlund A, Johansson A (2011) Humoral immune response to Aggregatibacter actinomycetemcomitans leukotoxin. J Periodontal Res 46:170–175

    Article  CAS  PubMed  Google Scholar 

  25. Pržulj N, Wigle DA, Jurisica I (2004) Functional topology in a network of protein interactions. Bioinformatics 20:340–348

    Article  PubMed  Google Scholar 

  26. Xu J, Li Y (2006) Discovering disease-genes by topological features in human protein–protein interaction network. Bioinformatics 22:2800–2805

    Article  CAS  PubMed  Google Scholar 

  27. Duncan M, Nakao S, Skobe Z, Xie H (1993) Interactions of Porphyromonas gingivalis with epithelial cells. Infect Immun 61:2260–2265

    PubMed Central  CAS  PubMed  Google Scholar 

  28. Dickinson BC, Moffatt CE, Hagerty D, Whitmore SE, Brown TA, Graves DT, Lamont RJ (2011) Interaction of oral bacteria with gingival epithelial cell multilayers. Mol Oral Microbiol 26:210–220

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Qin W, Jie L, Jingyi Y, Deyu Z, Jia N, Hong C, Jincai Z (2014) Involvement of clathrin and β-arrestins in Aggregatibacter actinomycetemcomitans endocytosis of human vascular endothelial cells. Afr J Microbiol Res 8(13):1394–1399

  30. Weinberg A, Belton CM, Park Y, Lamont RJ (1997) Role of fimbriae in Porphyromonas gingivalis invasion of gingival epithelial cells. Infect Immun 65:313–316

    PubMed Central  CAS  PubMed  Google Scholar 

  31. Dietmann A, Millonig A, Combes V, Couraud P-O, Kachlany SC, Grau GE (2013) Effects of Aggregatibacter actinomycetemcomitans leukotoxin on endothelial cells. Microb Pathog 61:43

    Article  PubMed  Google Scholar 

  32. Watanabe K, Yilmaz O, Nakhjiri SF, Belton CM, Lamont RJ (2001) Association of mitogen-activated protein kinase pathways with gingival epithelial cell responses to Porphyromonas gingivalis infection. Infect Immun 69:6731–6737

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Liu B, Cheng L, Liu D, Wang J, Zhang X, Shu R, Liang J (2012) Role of p38 mitogen-activated protein kinase pathway in Porphyromonas gingivalis lipopolysaccharide-induced VCAM-1 expression in human aortic endothelial cells. J Periodontol 83:955–962

    Article  CAS  PubMed  Google Scholar 

  34. Lee SD, Chang SH, Kuo WH et al (2006) Role of mitogen-activated protein kinase in Porphyromonas gingivalis-induced myocardial cell hypertrophy and apoptosis. Eur J Oral Sci 114:154–159

    Article  CAS  PubMed  Google Scholar 

  35. Hokamura K, Inaba H, Nakano K et al (2010) Molecular analysis of aortic intimal hyperplasia caused by Porphyromonas gingivalis infection in mice with endothelial damage. J Periodontal Res 45:337–344

    Article  CAS  PubMed  Google Scholar 

  36. Chan F, Ford P, Do H et al (2010) Distribution of P. gingivalis fimA genotypes in individuals with cardiovascular risk. In: Australian/New Zealand division golden jubilee meeting

Download references

Acknowledgments

This study was supported by grant from the Scientific Research Project of Heilongjiang Province Health Department (No. 2011-042), Educational Bureau of Heilongjiang Province (No. 11551186) and Educational Bureau of Heilongjiang Province (No. 12541564).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin Xue.

Additional information

Jing Lv and Yi-Xin Zhu were Co-first authors.

The Publisher and Editor retract this article in accordance with the recommendations of the Committee on Publication Ethics (COPE). After a thorough investigation we have strong reason to believe that the peer review process was compromised.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lv, J., Zhu, YX., Liu, YQ. et al. RETRACTED ARTICLE: Distinctive pathways characterize A. actinomycetemcomitans and P. gingivalis . Mol Biol Rep 42, 441–449 (2015). https://doi.org/10.1007/s11033-014-3785-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-014-3785-2

Keywords

Navigation