Advertisement

Molecular Biology Reports

, Volume 42, Issue 1, pp 105–117 | Cite as

Impact of CYP3A4 and MDR1 gene (G2677T) polymorphisms on dose requirement of the cyclosporine in renal transplant Egyptian recipients

  • Ola Sharaki
  • Montasser Zeid
  • Pacint Moez
  • Nermine Hossam Zakaria
  • Eman Nassar
Article

Abstract

Advances in immunosuppressive therapy allowed renal transplantation to become the treatment of choice for suitable candidates with (end stage renal disease) ESRD. The post-transplant therapeutic strategy is difficult due to narrow therapeutic indices for the currently used immunosuppressive drugs. Inter-individual differences in drug bioavailability are related to genetic and non genetic factors. The idea of targeted and personalized therapy is to achieve therapeutic success. The empirical dose has lost its value in the post-transplant therapy and an individualized dosage regimen must be established. Interindividual heterogeneity in expression of ABCB1 and CYP3A4 has been suspected to be one of the factors resulting in cyclosporine (CsA) pharmacokinetic variation. This study aimed to investigate the impact of inter-individual CYP3A4 rs4646437C>T and MDR1 G2677T/A polymorphisms on cyclosporine dose requirements among a sample of renal transplant Egyptian recipients. Fifty adult Egyptian patients on CsA were genotyped for CYP3A4 rs4646437C>T and MDR1 G2677T/A and correlated with CsA dose requirement and dose-adjusted CsA (C0) blood levels at 3, 6, and 9 months post transplantation. CYP3A4 rs4646437C>T influenced significantly cyclosporine kinetics, the T carriers requiring higher cyclosporine dose. Daily dose requirements were also significantly higher in T allele MDR1 2677G>T GG genotype as compared to GT/TT genotypes at 3, 6, and 9 months post transplantation. Genotyping of both CYP3A4 and MDR1 SNPs may be helpful in providing pre-transplant pharmacogenetic information to individualize CsA dosing. Heterozygous CT genotype is the most frequent CYP3A4 rs4646437C>T genotype in the studied group of Egyptian population (48 %) followed by CC genotype and TT genotype. Daily dose requirements were significantly higher in T allele MDR1 2677G>T GG genotype as compared to GT/TT genotypes at 3, 6, and 9 months post transplantation.

Keywords

Polymorphism Cyclosporine MDR1 CYP3A4 

References

  1. 1.
    Singh R, Srivastava A, Kapoor R, K Sharma R, D Mittal R (2009) Impact of CYP3A5 and CYP3A4 gene polymorphisms on dose requirement of calcineurin inhibitors, cyclosporine and tacrolimus, in renal allograft recipients of North India. Naunyn Schmiedebergs Arch Pharmacol 380(2):169–177PubMedCrossRefGoogle Scholar
  2. 2.
    Crettol S, Venetz JP, Fontana M, Aubert JD, Pascual M, Eap CB (2008) CYP3A7, CYP3A5, CYP3A4, and ABCB1 genetic polymorphisms, cyclosporine concentration, and dose requirement in transplant recipients. Ther Drug Monit 30(6):689–699PubMedCrossRefGoogle Scholar
  3. 3.
    Yu SF, Wu LH, Zheng SS (2006) Genetic factors for individual administration of immunosuppressants in organ transplantation. Hepatobiliary Pancreat Dis Int 5(3):337–344PubMedGoogle Scholar
  4. 4.
    Chowbay B, Cumaraswamy S, Cheung YB, Zhou Q, Lee EJ (2003) Genetic polymorphisms in MDR1 and CYP3A4 genes in Asians and the influence of MDR1 haplotypes on cyclosporin disposition in heart transplant recipients. Pharmacogenetics 13(2):89–95PubMedCrossRefGoogle Scholar
  5. 5.
    Wang Y, Wang C, Li J, Wang X, Zhu G, Chen X et al (2009) Effect of genetic polymorphisms of CYP3A5 and MDR1 on cyclosporine concentration during the early stage after renal transplantation in Chinese patients co-treated with diltiazem. Eur J Clin Pharmacol 65(3):239–247PubMedCrossRefGoogle Scholar
  6. 6.
    Uesugi M, Masuda S, Katsura T, Oike F, Takada Y, Inui K (2006) Effect of intestinal CYP3A5 on postoperative tacrolimus trough levels in living-donor liver transplant recipients. Pharmacogenet Genomics 16(2):119–127PubMedCrossRefGoogle Scholar
  7. 7.
    Salameh G, Al Hadidi K, El Khateeb M (2012) Genetic polymorphisms of the CYP3A4, CYP3A5, CYP3A7 and CYP1A2 among the Jordanian population. Environ Toxicol Pharmacol 34(1):23–33PubMedCrossRefGoogle Scholar
  8. 8.
    Wang D, Guo Y, Wrighton SA, Cooke GE, Sadee W (2011) Intronic polymorphism in CYP3A4 affects hepatic expression and response to statin drugs. Pharmacogenomics J 11(4):274–286PubMedCentralPubMedCrossRefGoogle Scholar
  9. 9.
  10. 10.
    Elens L, Bouamar R, Hesselink DA, Haufroid V, van Gelder T, van Schaik RH (2012) The new CYP3A4 intron 6 C>T polymorphism (CYP3A4*22) is associated with an increased risk of delayed graft function and worse renal function in cyclosporine-treated kidney transplant patients. Pharmacogenet Genomics 22(5):373–380PubMedGoogle Scholar
  11. 11.
    Schirmer M, Rosenberger A, Klein K, Kulle B, Toliat MR, Nurnberg P et al (2007) Sex-dependent genetic markers of CYP3A4 expression and activity in human liver microsomes. Pharmacogenomics 8(5):443–453PubMedCrossRefGoogle Scholar
  12. 12.
    Sheng X, Zhang L, Tong N, Luo D, Wang M, Xu M et al (2012) MDR1 C3435T polymorphism and cancer risk: a meta-analysis based on 39 case-control studies. Mol Biol Rep 39(7):7237–7249PubMedCrossRefGoogle Scholar
  13. 13.
    Dulucq S, Krajinovic M (2010) The pharmacogenetics of imanitib. Genome Med 2(11):85PubMedCentralPubMedCrossRefGoogle Scholar
  14. 14.
    Cho JH, Yoon YD, Park JY, Song EJ, Choi JY, Yoon SH et al (2012) Impact of cytochrome P450 3A and ATP-binding cassette subfamily B member 1 polymorphisms on tacrolimus dose-adjusted trough concentrations among Korean renal transplant recipients. Transplant Proc 44(1):109–114PubMedCrossRefGoogle Scholar
  15. 15.
    Hammann F, Hruz P, Kullak-Ublick G, Vavricka SR, Beglinger C, Drewe J et al (2012) Determination of the single nucleotide polymorphisms C3435 and G2677T in MDR1 and C421A in BCRP in blood samples of patients with inflammatory bowel disease and healthy controls in the Swiss population. Metabolomics 2:104Google Scholar
  16. 16.
    Kubista M, Andrade JM, Bengtsson M, Forootan A, Jonak J, Lind K et al (2006) The real-time polymerase chain reaction. Mol Aspects Med 27(2–3):95–12517PubMedCrossRefGoogle Scholar
  17. 17.
    Schirmer M, Rosenberger A, Klein K, Kulle B, Toliat MR, Nurnberg P et al (2007) Sex-dependent genetic markers of CYP3A4 expression and activity in human liver microsomes. Pharmacogenomics 8(5):443–453PubMedCrossRefGoogle Scholar
  18. 18.
    Oneda B, Crettol S, Jaquenoud Sirot E, Bochud M, Ansermot N, Eap CB (2009) The P450 oxidoreductase genotype is associated with CYP3A activity in vivo as measured by the midazolam phenotyping test. Pharmacogenet Genomics 19(11):877–883PubMedCrossRefGoogle Scholar
  19. 19.
    Cho JH, Yoon YD, Park JY, Song EJ, Choi JY, Yoon SH et al (2012) Impact of cytochrome P450 3A and ATP-binding cassette subfamily B member 1 polymorphisms on tacrolimus dose-adjusted trough concentrations among Korean renal transplant recipients. Transplant Proc 44(1):109–114PubMedCrossRefGoogle Scholar
  20. 20.
    Fanta S, Niemi M, Jonsson S, Karlsson MO, Holmberg C, Neuvonen PJ et al (2008) Pharmacogenetics of cyclosporine in children suggests an age-dependent influence of ABCB1 polymorphisms. Pharmacogenet Genomics 18(2):77–90PubMedCrossRefGoogle Scholar
  21. 21.
    Singh R, Kesarwani P, Srivastava A, Mittal RD (2008) ABCB1 G2677 allele is associated with high dose requirement of cyclosporin A to prevent renal allograft rejection in North India. Arch Med Res 39(7):695–701PubMedCrossRefGoogle Scholar
  22. 22.
    Kuypers DR, de Jonge H, Naesens M, Lerut E, Verbeke K, Vanrenterghem Y (2007) CYP3A5 and CYP3A4 but not MDR1 single-nucleotide polymorphisms determine long-term tacrolimus disposition and drug-related nephrotoxicity in renal recipients. Clin Pharmacol Ther 82(6):711–725PubMedCrossRefGoogle Scholar
  23. 23.
    Satoh S, Saito M, Inoue T, Kagaya H, Miura M, Inoue K et al (2009) CYP3A5 *1 allele associated with tacrolimus trough concentrations but not subclinical acute rejection or chronic allograft nephropathy in Japanese renal transplant recipients. Eur J Clin Pharmacol 65(5):473–481PubMedCrossRefGoogle Scholar
  24. 24.
    Song P, Li S, Meibohm B, Gaber AO, Honaker MR, Kotb M et al (2002) Detection of MDR1 single nucleotide polymorphisms C3435T and G2677T using real-time polymerase chain reaction: MDR1 single nucleotide polymorphism genotyping assay. AAPS Pharm Sci 4(4):E29CrossRefGoogle Scholar
  25. 25.
    Haufroid V, Mourad M, Van Kerckhove V, Wawrzyniak J, De Meyer M, Eddour DC et al (2004) The effect of CYP3A5 and MDR1 (ABCB1) polymorphisms on cyclosporine and tacrolimus dose requirements and trough blood levels in stable renal transplant patients. Pharmacogenetics 14(3):147–154PubMedCrossRefGoogle Scholar
  26. 26.
    Fredericks S, Jorga A, MacPhee IA, Reboux S, Shiferaw E, Moreton M et al (2007) Multi-drug resistance gene-1 (MDR-1) haplotypes and the CYP3A5*1 genotype have no influence on cyclosporin dose requirements as assessed by C0 or C2 measurements. Clin Transplant 21(2):252–257PubMedCrossRefGoogle Scholar
  27. 27.
    Foote CJ, Greer W, Kiberd B, Fraser A, Lawen J, Nashan B et al (2007) Polymorphisms of multidrug resistance gene (MDR1) and cyclosporine absorption in de novo renal transplant patients. Transplantation 83(10):1380–1384PubMedCrossRefGoogle Scholar
  28. 28.
    Choi JH, Lee YJ, Jang SB, Lee JE, Kim KH, Park K (2007) Influence of the CYP3A5 and MDR1 genetic polymorphisms on the pharmacokinetics of tacrolimus in healthy Korean subjects. Br J Clin Pharmacol 64(2):185–191PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Ola Sharaki
    • 1
  • Montasser Zeid
    • 2
  • Pacint Moez
    • 1
  • Nermine Hossam Zakaria
    • 1
  • Eman Nassar
    • 1
  1. 1.Clinical and Chemical Pathology, Faculty of MedicineAlexandria UniversityAlexandriaEgypt
  2. 2.Internal Medicine Department, Faculty of MedicineAlexandria UniversityAlexandriaEgypt

Personalised recommendations