Molecular Biology Reports

, Volume 41, Issue 12, pp 8127–8135 | Cite as

Investigation of key miRNAs and target genes in bladder cancer using miRNA profiling and bioinformatic tools

  • Kemal Murat Canturk
  • Muhsin Ozdemir
  • Cavit Can
  • Setenay Öner
  • Ramazan Emre
  • Huseyin Aslan
  • Oguz Cilingir
  • Evrim Ciftci
  • Fatih Mehmet Celayir
  • Ozgur Aldemir
  • Mustafa Özen
  • Sevilhan Artan


Despite the association of several miRNAs with bladder cancer, little is known about the miRNAs’ regulatory networks. In this study, we aimed to construct potential networks of bladder-cancer-related miRNAs and their known target genes using miRNA expression profiling and bioinformatics tools and to investigate potential key molecules that might play roles in bladder cancer regulatory networks. Global miRNA expression profiles were obtained using microarray followed by RT-qPCR validation using two randomly selected miRNAs. Known targets of deregulated miRNAs were utilized using DIANA-TarBase database v6.0. The incorporation of deregulated miRNAs and target genes into KEGG pathways were utilized using DIANA-mirPath software. To construct potential miRNA regulatory networks, the overlapping parts of three selected KEGG pathways were visualized by Cytoscape software. We finally gained 19 deregulated miRNAs, including 5 ups- and 14 down regulated in 27 bladder-cancer tissue samples and 8 normal urothelial tissue samples. The enrichment results of deregulated miRNAs and known target genes showed that most pathways were related to cancer or cell signaling pathways. We determined the hub CDK6, BCL2, E2F3, PTEN, MYC, RB, and ERBB3 target genes and hub hsa-let-7c, hsa-miR-195-5p, hsa-miR-141-3p, hsa-miR-26a-5p, hsa-miR-23b-3p, and hsa-miR-125b-5p miRNAs of the constructed networks. These findings provide new insights into the bladder cancer regulatory networks and give us a hypothesis that hsa-let-7c, hsa-miR-195-5p, and hsa-miR-125b-5p, along with CDK4 and CDK6 genes might exist in the same bladder cancer pathway. Particularly, hub miRNAs and genes might be potential biomarkers for bladder cancer clinics.


Bladder cancer miRNA Bioinformation KEGG pathways CDK4 CDK6 



This research was supported by the Eskisehir Osmangazi University Research Fund with Grant no. 200811031. We are also thankful to Ece TURKMEN, the Product Manager at SEM Laboratuar Cihazlari Paz. San. Tic. A. S, (Istanbul-Turkey), who provided facilities to carry out this study.


  1. 1.
    Ferlay J, Soerjomataram I, Ervik M, Dikshit R, Eser S, Mathers C, Rebelo M, Parkin DM, Forman D, Bray, F (2013) GLOBOCAN 2012 v1.0, Cancer incidence and mortality worldwide: IARC cancerbase No. 11 Lyon, France: international agency for research on cancer. Available from:, accessed on 04/06/2014.
  2. 2.
    Taioli E, Raimondi S (2005) Genetic susceptibility to bladder cancer. Lancet 366:610–612CrossRefPubMedGoogle Scholar
  3. 3.
    Clapp RW, Jacobs MM, Loechler EL (2008) Environmental and occupational causes of cancer: new evidence 2005-2007. Rev Environ Health 23:1–37PubMedCentralCrossRefPubMedGoogle Scholar
  4. 4.
    Garzon R, Marcucci G, Croce CM (2010) Targeting microRNAs in cancer: rationale, strategies and challenges. Nat Rev Drug Discov 9:775–789PubMedCentralCrossRefPubMedGoogle Scholar
  5. 5.
  6. 6.
    Visone R, Croce CM (2009) MiRNAs and cancer. Am J Pathol 174:1131PubMedCentralCrossRefPubMedGoogle Scholar
  7. 7.
    Esquela-Kerscher A, Slack FJ (2006) Oncomirs—microRNAs with a role in cancer. Nat Rev Cancer 6:259–269CrossRefPubMedGoogle Scholar
  8. 8.
    Chen YH et al (2013) Characterization of microRNAs expression profiling in one group of Chinese urothelial cell carcinoma identified by Solexa sequencing. Urol Oncol 31:219–227CrossRefPubMedGoogle Scholar
  9. 9.
    Dyrskjøt L et al (2009) Genomic profiling of microRNAs in bladder cancer: miR-129 is associated with poor outcome and promotes cell death in vitro. Cancer Res 69:4851–4860CrossRefPubMedGoogle Scholar
  10. 10.
    Han Y et al (2011) MicroRNA expression signatures of bladder cancer revealed by deep sequencing. PLoS ONE 6:e18286PubMedCentralCrossRefPubMedGoogle Scholar
  11. 11.
    Puerta-Gil P, Garcia-Baquero R, Jia AY, Ocana S, Alvarez-Mugica M, Alvarez-Ossorio JL, Cordon-Cardo C, Cava F, Sanchez-Carbayo M (2012) miR-143, miR-222, and miR-452 are useful as tumor stratification and noninvasive diagnostic biomarkers for bladder cancer. Am J Pathol 180:1808–1815CrossRefPubMedGoogle Scholar
  12. 12.
    Rosenberg E, Baniel J, Spector Y, Faerman A, Meiri E, Aharonov R, Margel D, Goren Y, Nativ O (2013) Predicting progression of bladder urothelial carcinoma using microRNA expression. BJU Int 112(7):1027–1034PubMedGoogle Scholar
  13. 13.
    Wang S, Hu J, Zhang D, Li J, Fei Q, Sun Y (2014) Prognostic role of microRNA-31 in various cancers: a meta-analysis.Tumour Biol. [Epub ahead of print]Google Scholar
  14. 14.
    Fu W, Pang L, Chen Y, Yang L, Zhu J, Wei Y (2014) The MicroRNAs as prognostic biomarkers for survival in esophageal cancer: a meta-analysis. Sci World J. 2014: 523979. Epub 2014 Jul 6. Review.Google Scholar
  15. 15.
    Vergoulis T, Vlachos IS, Alexiou P, , Georgakilas G, , Maragkakis M, Reczko M, Gerangelos S, Koziris N, Dalamagas T, Hatzigeorgiou AG (2012) Tarbase 6.0: capturing the exponential growth of miRNA targets with experimental support. Nucl Acids Res 40(D1):D222–D229. doi: 10.1093/nar/gkr1161 PubMedCentralCrossRefPubMedGoogle Scholar
  16. 16.
    Vlachos IS, Kostoulas N, Vergoulis T, Georgakilas G, Reczko M, Maragkakis M, Paraskevopoulou MD, Prionidis K, Dalamagas T, Hatzigeorgiou AG (2012) DIANA miRPath v.2.0: investigating the combinatorial effect of microRNAs in pathways nucleic acids research (Web server issue)Google Scholar
  17. 17.
    Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13:2498–2504PubMedCentralCrossRefPubMedGoogle Scholar
  18. 18.
    Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Series B Stat Methodol 57:289–300Google Scholar
  19. 19.
    Yoshino H, Seki N, Itesako T, Chiyomaru T, Nakagawa M (2013) Enokida H (2013) Aberrant expression of microRNAs in bladder cancer. Nat Rev Urol 10(7):396–404. doi: 10.1038/nrurol.2013.113.Epub.Review CrossRefPubMedGoogle Scholar
  20. 20.
    Guancial EA, Bellmunt J, Yeh S, Rosenberg JE, Berman DM (2014) The evolving understanding of microRNA in bladder cancer. UrolOncol 32(1):e31–e40. doi: 10.1016/j.urolonc.2013.04.014 Epub 2013 Aug 2Google Scholar
  21. 21.
  22. 22.
    Abdollahi A, Schwager C, Kleeff J, Esposito I, Domhan S, Peschke P, Hauser K, Hahnfeldt P, Hlatky L, Debus J, Peters JM, Friess H, Folkman J, Huber PE (2007) Transcriptional network governing the angiogenic switch in human pancreatic cancer. Proc Natl Acad Sci USA 104(31):12890–12895 Epub 2007 Jul 24PubMedCentralCrossRefPubMedGoogle Scholar
  23. 23.
    Horvath S, Zhang B, Carlson M, Lu KV, Zhu S, Felciano RM, Laurance MF, Zhao W, Qi S, Chen Z, Lee Y, Scheck AC, Liau LM, Wu H, Geschwind DH, Febbo PG, Kornblum HI, Cloughesy TF, Nelson SF, Mischel PS (2006) Analysis of oncogenic signaling networks in glioblastoma identifies ASPM as a molecular target. Proc Natl Acad Sci USA 103(46):17402–17407 Epub 2006 Nov 7PubMedCentralCrossRefPubMedGoogle Scholar
  24. 24.
    Castillo-Martin M, Domingo-Domenech J, Karni-Schmidt O, Matos T, Cordon-Cardo C (2010) Molecular pathways of urothelial development and bladder tumorigenesis. UrolOncol 28(4): 401–8. doi:  10.1016/j.urolonc.2009.04.019. Review.
  25. 25.
    Sfakianos JP, Lin Gellert L, Maschino A, Gotto GT, Kim PH, Al-Ahmadie H, Bochner BH (2014) The role of PTEN tumor suppressor pathway staining in carcinoma in situ of the bladder. UrolOncol S1078–1439(14):00034–00039. doi: 10.1016/j.urolonc.2014.02.003 Epub ahead of printGoogle Scholar
  26. 26.
    Olsson AY, Feber A, Edwards S, TePoele R, Giddings I, Merson S, Cooper CS (2007) Role of E2F3 expression in modulating cellular proliferation rate in human bladder and prostate cancer cells. Oncogene 26(7):1028–1037 Epub 2006 Aug 14CrossRefPubMedGoogle Scholar
  27. 27.
    Huang L, Luo J, Cai Q, Pan Q, Zeng H, Guo Z, Dong W, Huang J, Lin T (2011) MicroRNA-125b suppresses the development of bladder cancer by targeting E2F3. Int J Cancer 128(8):1758–1769. doi: 10.1002/ijc.25509 CrossRefPubMedGoogle Scholar
  28. 28.
    Wu XR (2005) Urothelial tumorigenesis: a tale of divergent pathways. Nat Rev Cancer 5(9):713–725CrossRefPubMedGoogle Scholar
  29. 29.
    Wang G, Zheng L, Yu Z, Liao G, Lu L, Xu R, Zhao Z, Chen G (2012) Increased cyclin-dependent kinase 6 expression in bladder cancer. Oncol Lett 4(1):43–46 Epub 2012 Apr 25PubMedCentralPubMedGoogle Scholar
  30. 30.
    Lin Y, Wu J, Chen H, Mao Y, Liu Y, Mao Q, Yang K, Zheng X, Xie L (2012) Cyclin-dependent kinase 4 is a novel target in micoRNA-195-mediated cell cycle arrest in bladder cancer cells. FEBS Lett 586(4):442–447. doi: 10.1016/j.febslet.2012.01.027 EpubCrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Kemal Murat Canturk
    • 1
    • 2
  • Muhsin Ozdemir
    • 2
  • Cavit Can
    • 3
  • Setenay Öner
    • 4
  • Ramazan Emre
    • 1
  • Huseyin Aslan
    • 2
  • Oguz Cilingir
    • 2
  • Evrim Ciftci
    • 5
  • Fatih Mehmet Celayir
    • 6
  • Ozgur Aldemir
    • 7
  • Mustafa Özen
    • 8
  • Sevilhan Artan
    • 2
  1. 1.Ministry of Justice, Department of BiologyCouncil of Forensic MedicineIstanbulTurkey
  2. 2.Department of Medical GeneticsEskisehir Osmangazi UniversityEskisehirTurkey
  3. 3.Department of UrologyEskisehir Osmangazi UniversityEskisehirTurkey
  4. 4.Department of BiostatisticsEskisehir Osmangazi UniversityEskisehirTurkey
  5. 5.Faculty Department of PathologyEskisehir Osmangazi UniversityEskisehirTurkey
  6. 6.Department of Medical GeneticsBursa SevketYılmaz Government HospitalBursaTurkey
  7. 7.Department of Medical GeneticsMustafa Kemal UniversityHatayTurkey
  8. 8. Department of Medical Genetics Istanbul University Cerrahpasa Medical FacultyIstanbulTurkey

Personalised recommendations