Skip to main content

Advertisement

Log in

Investigation of key miRNAs and target genes in bladder cancer using miRNA profiling and bioinformatic tools

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Despite the association of several miRNAs with bladder cancer, little is known about the miRNAs’ regulatory networks. In this study, we aimed to construct potential networks of bladder-cancer-related miRNAs and their known target genes using miRNA expression profiling and bioinformatics tools and to investigate potential key molecules that might play roles in bladder cancer regulatory networks. Global miRNA expression profiles were obtained using microarray followed by RT-qPCR validation using two randomly selected miRNAs. Known targets of deregulated miRNAs were utilized using DIANA-TarBase database v6.0. The incorporation of deregulated miRNAs and target genes into KEGG pathways were utilized using DIANA-mirPath software. To construct potential miRNA regulatory networks, the overlapping parts of three selected KEGG pathways were visualized by Cytoscape software. We finally gained 19 deregulated miRNAs, including 5 ups- and 14 down regulated in 27 bladder-cancer tissue samples and 8 normal urothelial tissue samples. The enrichment results of deregulated miRNAs and known target genes showed that most pathways were related to cancer or cell signaling pathways. We determined the hub CDK6, BCL2, E2F3, PTEN, MYC, RB, and ERBB3 target genes and hub hsa-let-7c, hsa-miR-195-5p, hsa-miR-141-3p, hsa-miR-26a-5p, hsa-miR-23b-3p, and hsa-miR-125b-5p miRNAs of the constructed networks. These findings provide new insights into the bladder cancer regulatory networks and give us a hypothesis that hsa-let-7c, hsa-miR-195-5p, and hsa-miR-125b-5p, along with CDK4 and CDK6 genes might exist in the same bladder cancer pathway. Particularly, hub miRNAs and genes might be potential biomarkers for bladder cancer clinics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Ferlay J, Soerjomataram I, Ervik M, Dikshit R, Eser S, Mathers C, Rebelo M, Parkin DM, Forman D, Bray, F (2013) GLOBOCAN 2012 v1.0, Cancer incidence and mortality worldwide: IARC cancerbase No. 11 Lyon, France: international agency for research on cancer. Available from: http://globocan.iarc.fr, accessed on 04/06/2014.

  2. Taioli E, Raimondi S (2005) Genetic susceptibility to bladder cancer. Lancet 366:610–612

    Article  PubMed  Google Scholar 

  3. Clapp RW, Jacobs MM, Loechler EL (2008) Environmental and occupational causes of cancer: new evidence 2005-2007. Rev Environ Health 23:1–37

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Garzon R, Marcucci G, Croce CM (2010) Targeting microRNAs in cancer: rationale, strategies and challenges. Nat Rev Drug Discov 9:775–789

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. http://www.mirbase.org/index.shtml

  6. Visone R, Croce CM (2009) MiRNAs and cancer. Am J Pathol 174:1131

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Esquela-Kerscher A, Slack FJ (2006) Oncomirs—microRNAs with a role in cancer. Nat Rev Cancer 6:259–269

    Article  CAS  PubMed  Google Scholar 

  8. Chen YH et al (2013) Characterization of microRNAs expression profiling in one group of Chinese urothelial cell carcinoma identified by Solexa sequencing. Urol Oncol 31:219–227

    Article  CAS  PubMed  Google Scholar 

  9. Dyrskjøt L et al (2009) Genomic profiling of microRNAs in bladder cancer: miR-129 is associated with poor outcome and promotes cell death in vitro. Cancer Res 69:4851–4860

    Article  PubMed  Google Scholar 

  10. Han Y et al (2011) MicroRNA expression signatures of bladder cancer revealed by deep sequencing. PLoS ONE 6:e18286

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Puerta-Gil P, Garcia-Baquero R, Jia AY, Ocana S, Alvarez-Mugica M, Alvarez-Ossorio JL, Cordon-Cardo C, Cava F, Sanchez-Carbayo M (2012) miR-143, miR-222, and miR-452 are useful as tumor stratification and noninvasive diagnostic biomarkers for bladder cancer. Am J Pathol 180:1808–1815

    Article  CAS  PubMed  Google Scholar 

  12. Rosenberg E, Baniel J, Spector Y, Faerman A, Meiri E, Aharonov R, Margel D, Goren Y, Nativ O (2013) Predicting progression of bladder urothelial carcinoma using microRNA expression. BJU Int 112(7):1027–1034

    CAS  PubMed  Google Scholar 

  13. Wang S, Hu J, Zhang D, Li J, Fei Q, Sun Y (2014) Prognostic role of microRNA-31 in various cancers: a meta-analysis.Tumour Biol. [Epub ahead of print]

  14. Fu W, Pang L, Chen Y, Yang L, Zhu J, Wei Y (2014) The MicroRNAs as prognostic biomarkers for survival in esophageal cancer: a meta-analysis. Sci World J. 2014: 523979. Epub 2014 Jul 6. Review.

  15. Vergoulis T, Vlachos IS, Alexiou P, , Georgakilas G, , Maragkakis M, Reczko M, Gerangelos S, Koziris N, Dalamagas T, Hatzigeorgiou AG (2012) Tarbase 6.0: capturing the exponential growth of miRNA targets with experimental support. Nucl Acids Res 40(D1):D222–D229. doi:10.1093/nar/gkr1161

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Vlachos IS, Kostoulas N, Vergoulis T, Georgakilas G, Reczko M, Maragkakis M, Paraskevopoulou MD, Prionidis K, Dalamagas T, Hatzigeorgiou AG (2012) DIANA miRPath v.2.0: investigating the combinatorial effect of microRNAs in pathways nucleic acids research (Web server issue)

  17. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13:2498–2504

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Series B Stat Methodol 57:289–300

    Google Scholar 

  19. Yoshino H, Seki N, Itesako T, Chiyomaru T, Nakagawa M (2013) Enokida H (2013) Aberrant expression of microRNAs in bladder cancer. Nat Rev Urol 10(7):396–404. doi:10.1038/nrurol.2013.113.Epub.Review

    Article  CAS  PubMed  Google Scholar 

  20. Guancial EA, Bellmunt J, Yeh S, Rosenberg JE, Berman DM (2014) The evolving understanding of microRNA in bladder cancer. UrolOncol 32(1):e31–e40. doi:10.1016/j.urolonc.2013.04.014 Epub 2013 Aug 2

    Google Scholar 

  21. http://www.kegg.jp/kegg-bin/search_pathway_text?map=map&keyword=cancer&mode=1&viewImage=true

  22. Abdollahi A, Schwager C, Kleeff J, Esposito I, Domhan S, Peschke P, Hauser K, Hahnfeldt P, Hlatky L, Debus J, Peters JM, Friess H, Folkman J, Huber PE (2007) Transcriptional network governing the angiogenic switch in human pancreatic cancer. Proc Natl Acad Sci USA 104(31):12890–12895 Epub 2007 Jul 24

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Horvath S, Zhang B, Carlson M, Lu KV, Zhu S, Felciano RM, Laurance MF, Zhao W, Qi S, Chen Z, Lee Y, Scheck AC, Liau LM, Wu H, Geschwind DH, Febbo PG, Kornblum HI, Cloughesy TF, Nelson SF, Mischel PS (2006) Analysis of oncogenic signaling networks in glioblastoma identifies ASPM as a molecular target. Proc Natl Acad Sci USA 103(46):17402–17407 Epub 2006 Nov 7

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Castillo-Martin M, Domingo-Domenech J, Karni-Schmidt O, Matos T, Cordon-Cardo C (2010) Molecular pathways of urothelial development and bladder tumorigenesis. UrolOncol 28(4): 401–8. doi: 10.1016/j.urolonc.2009.04.019. Review.

  25. Sfakianos JP, Lin Gellert L, Maschino A, Gotto GT, Kim PH, Al-Ahmadie H, Bochner BH (2014) The role of PTEN tumor suppressor pathway staining in carcinoma in situ of the bladder. UrolOncol S1078–1439(14):00034–00039. doi:10.1016/j.urolonc.2014.02.003 Epub ahead of print

    Google Scholar 

  26. Olsson AY, Feber A, Edwards S, TePoele R, Giddings I, Merson S, Cooper CS (2007) Role of E2F3 expression in modulating cellular proliferation rate in human bladder and prostate cancer cells. Oncogene 26(7):1028–1037 Epub 2006 Aug 14

    Article  CAS  PubMed  Google Scholar 

  27. Huang L, Luo J, Cai Q, Pan Q, Zeng H, Guo Z, Dong W, Huang J, Lin T (2011) MicroRNA-125b suppresses the development of bladder cancer by targeting E2F3. Int J Cancer 128(8):1758–1769. doi:10.1002/ijc.25509

    Article  CAS  PubMed  Google Scholar 

  28. Wu XR (2005) Urothelial tumorigenesis: a tale of divergent pathways. Nat Rev Cancer 5(9):713–725

    Article  CAS  PubMed  Google Scholar 

  29. Wang G, Zheng L, Yu Z, Liao G, Lu L, Xu R, Zhao Z, Chen G (2012) Increased cyclin-dependent kinase 6 expression in bladder cancer. Oncol Lett 4(1):43–46 Epub 2012 Apr 25

    PubMed Central  PubMed  Google Scholar 

  30. Lin Y, Wu J, Chen H, Mao Y, Liu Y, Mao Q, Yang K, Zheng X, Xie L (2012) Cyclin-dependent kinase 4 is a novel target in micoRNA-195-mediated cell cycle arrest in bladder cancer cells. FEBS Lett 586(4):442–447. doi:10.1016/j.febslet.2012.01.027 Epub

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by the Eskisehir Osmangazi University Research Fund with Grant no. 200811031. We are also thankful to Ece TURKMEN, the Product Manager at SEM Laboratuar Cihazlari Paz. San. Tic. A. S, (Istanbul-Turkey), who provided facilities to carry out this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kemal Murat Canturk.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Canturk, K.M., Ozdemir, M., Can, C. et al. Investigation of key miRNAs and target genes in bladder cancer using miRNA profiling and bioinformatic tools. Mol Biol Rep 41, 8127–8135 (2014). https://doi.org/10.1007/s11033-014-3713-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-014-3713-5

Keywords

Navigation