Advertisement

Molecular Biology Reports

, Volume 41, Issue 11, pp 7305–7312 | Cite as

Multiplex pyrosequencing method to determine CYP2C9*3, VKORC1*2, and CYP4F2*3 polymorphisms simultaneously: its application to a Korean population and comparisons with other ethnic groups

  • Kyoung-Ah Kim
  • Wan-Geun Song
  • Hae-Mi Lee
  • Hyun-Jin Joo
  • Ji-Young Park
Article

Abstract

Warfarin is an anticoagulant that is difficult to administer because of the wide variation in dose requirements to achieve a therapeutic effect. CYP2C9, VKROC1, and CYP4F2 play important roles in warfarin metabolism, and their genetic polymorphisms are related to the variability in dose determination. In this study we describe a new multiplex pyrosequencing method to identify CYP2C9*3 (rs1057910), VKORC1*2 (rs9923231), and CYP4F2*3 (rs2108661) simultaneously. A multiplex pyrosequencing method to simultaneously detect CYP2C9*3, VKORC1*2, and CYP4F2*3 alleles was designed. We assessed the allele frequencies of the polymorphisms in 250 Korean subjects using the multiplex pyrosequencing method. The results showed 100 % concordance between single and multiplex pyrosequencing methods, and the polymorphisms identified by pyrosequencing were also validated with the direct sequencing method. The allele frequencies of these polymorphisms in this population were as follows: 0.040 for CYP2C9*3, 0.918 for VKORC1*2, and 0.416 for CYP4F2*3. Although the allele frequencies of the CYP2C9*3 and VKROC1*2 were comparable to those in Japanese and Chinese populations, their frequencies in this Korean population differed from those in other ethnic groups; the CYP4F2*3 frequency was the highest among other ethnic populations including Chinese and Japanese populations. The pyrosequencing methods developed were rapid and reliable for detecting CYP2C9*3, VKORC1*2, and CYP4F2*3. Large ethnic differences in the frequency of these genetic polymorphisms were noted among ethnic groups. CYP4F2*3 exhibited its highest allele frequency among other ethnic populations compared to that in a Korean population.

Keywords

CYP2C9 VKORC1 CYP4F2 Pyrosequencing Pharmacogenetics Ethnic difference Koreans 

Notes

Acknowledgments

This study was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science, and Technology (No. 2009-0074126).

References

  1. 1.
    Wen MS, Lee M, Chen JJ, Chuang HP, Lu LS, Chen CH, Lee TH, Kuo CT, Sun FM, Chang YJ, Kuan PL, Chen YF, Charng MJ, Ray CY, Wu JY, Chen YT (2008) Prospective study of warfarin dosage requirements based on CYP2C9 and VKORC1 genotypes. Clin Pharmacol Ther 84(1):83–89. doi: 10.1038/sj.clpt.6100453 PubMedCrossRefGoogle Scholar
  2. 2.
    Wadelius M, Pirmohamed M (2007) Pharmacogenetics of warfarin: current status and future challenges. Pharmacogenomics J 7(2):99–111. doi: 10.1038/sj.tpj.6500417 PubMedCrossRefGoogle Scholar
  3. 3.
    Wang TL, Li HL, Tjong WY, Chen QS, Wu GS, Zhu HT, Hou ZS, Xu S, Ma SJ, Wu M, Tai S (2008) Genetic factors contribute to patient-specific warfarin dose for Han Chinese. Clin Chim Acta 396(1–2):76–79. doi: 10.1016/j.cca.2008.07.005 PubMedCrossRefGoogle Scholar
  4. 4.
    Stehle S, Kirchheiner J, Lazar A, Fuhr U (2008) Pharmacogenetics of oral anticoagulants: a basis for dose individualization. Clin Pharmacokinet 47(9):565–594PubMedCrossRefGoogle Scholar
  5. 5.
    Lee HW, Lim MS, Lee J, Jegal MY, Kim DW, Lee WK, Jang IJ, Shin JG, Yoon YR (2012) Frequency of CYP2C9 variant alleles, including CYP2C9*13 in a Korean population and effect on glimepiride pharmacokinetics. J Clin Pharm Ther 37(1):105–111. doi: 10.1111/j.1365-2710.2010.01238.x PubMedCrossRefGoogle Scholar
  6. 6.
    Nasu K, Kubota T, Ishizaki T (1997) Genetic analysis of CYP2C9 polymorphism in a Japanese population. Pharmacogenetics 7(5):405–409PubMedCrossRefGoogle Scholar
  7. 7.
    Chern HD, Ueng TH, Fu YP, Cheng CW (2006) CYP2C9 polymorphism and warfarin sensitivity in Taiwan Chinese. Clin Chim Acta 367(1–2):108–113. doi: 10.1016/j.cca.2005.11.026 PubMedCrossRefGoogle Scholar
  8. 8.
    Lee MT, Chen CH, Chou CH, Lu LS, Chuang HP, Chen YT, Saleem AN, Wen MS, Chen JJ, Wu JY, Chen YT (2009) Genetic determinants of warfarin dosing in the Han-Chinese population. Pharmacogenomics 10(12):1905–1913. doi: 10.2217/pgs.09.106 PubMedCrossRefGoogle Scholar
  9. 9.
    D’Andrea G, D’Ambrosio RL, Di Perna P, Chetta M, Santacroce R, Brancaccio V, Grandone E, Margaglione M (2005) A polymorphism in the VKORC1 gene is associated with an interindividual variability in the dose-anticoagulant effect of warfarin. Blood 105(2):645–649. doi: 10.1182/blood-2004-06-2111 PubMedCrossRefGoogle Scholar
  10. 10.
    Rieder MJ, Reiner AP, Gage BF, Nickerson DA, Eby CS, McLeod HL, Blough DK, Thummel KE, Veenstra DL, Rettie AE (2005) Effect of VKORC1 haplotypes on transcriptional regulation and warfarin dose. N Engl J Med 352(22):2285–2293. doi: 10.1056/NEJMoa044503 PubMedCrossRefGoogle Scholar
  11. 11.
    Yuan HY, Chen JJ, Lee MT, Wung JC, Chen YF, Charng MJ, Lu MJ, Hung CR, Wei CY, Chen CH, Wu JY, Chen YT (2005) A novel functional VKORC1 promoter polymorphism is associated with inter-individual and inter-ethnic differences in warfarin sensitivity. Hum Mol Genet 14(13):1745–1751. doi: 10.1093/hmg/ddi180 PubMedCrossRefGoogle Scholar
  12. 12.
    Wu AH, Wang P, Smith A, Haller C, Drake K, Linder M, Valdes R Jr (2008) Dosing algorithm for warfarin using CYP2C9 and VKORC1 genotyping from a multi-ethnic population: comparison with other equations. Pharmacogenomics 9(2):169–178. doi: 10.2217/14622416.9.2.169 PubMedCrossRefGoogle Scholar
  13. 13.
    Gage BF, Eby C, Johnson JA, Deych E, Rieder MJ, Ridker PM, Milligan PE, Grice G, Lenzini P, Rettie AE, Aquilante CL, Grosso L, Marsh S, Langaee T, Farnett LE, Voora D, Veenstra DL, Glynn RJ, Barrett A, McLeod HL (2008) Use of pharmacogenetic and clinical factors to predict the therapeutic dose of warfarin. Clin Pharmacol Ther 84(3):326–331. doi: 10.1038/clpt.2008.10 PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Miyata N, Roman RJ (2005) Role of 20-hydroxyeicosatetraenoic acid (20-HETE) in vascular system. J Smooth Muscle Res 41(4):175–193PubMedCrossRefGoogle Scholar
  15. 15.
    Roman RJ (2002) P-450 metabolites of arachidonic acid in the control of cardiovascular function. Physiol Rev 82(1):131–185. doi: 10.1152/physrev.00021.2001 PubMedGoogle Scholar
  16. 16.
    McDonald MG, Rieder MJ, Nakano M, Hsia CK, Rettie AE (2009) CYP4F2 is a vitamin K1 oxidase: an explanation for altered warfarin dose in carriers of the V433 M variant. Mol Pharmacol 75(6):1337–1346. doi: 10.1124/mol.109.054833 PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Schalekamp T, Brasse BP, Roijers JF, van Meegen E, van der Meer FJ, van Wijk EM, Egberts AC, de Boer A (2007) VKORC1 and CYP2C9 genotypes and phenprocoumon anticoagulation status: interaction between both genotypes affects dose requirement. Clin Pharmacol Ther 81(2):185–193. doi: 10.1038/sj.clpt.6100036 PubMedCrossRefGoogle Scholar
  18. 18.
    Krishna Kumar D, Shewade DG, Loriot MA, Beaune P, Balachander J, Sai Chandran BV, Adithan C (2014) Effect of CYP2C9, VKORC1, CYP4F2 and GGCX genetic variants on warfarin maintenance dose and explicating a new pharmacogenetic algorithm in South Indian population. Eur J Clin Pharmacol 70(1):47–56. doi: 10.1007/s00228-013-1581-x PubMedCrossRefGoogle Scholar
  19. 19.
    Pautas E, Moreau C, Gouin-Thibault I, Golmard JL, Mahe I, Legendre C, Taillandier-Heriche E, Durand-Gasselin B, Houllier AM, Verrier P, Beaune P, Loriot MA, Siguret V (2010) Genetic factors (VKORC1, CYP2C9, EPHX1, and CYP4F2) are predictor variables for warfarin response in very elderly, frail inpatients. Clin Pharmacol Ther 87(1):57–64. doi: 10.1038/clpt.2009.178 PubMedCrossRefGoogle Scholar
  20. 20.
    Mizugaki M, Hiratsuka M, Agatsuma Y, Matsubara Y, Fujii K, Kure S, Narisawa K (2000) Rapid detection of CYP2C18 genotypes by real-time fluorescence polymerase chain reaction. J Pharm Pharmacol 52(2):199–205PubMedCrossRefGoogle Scholar
  21. 21.
    Kim KA, Song WK, Kim KR, Park JY (2010) Assessment of CYP2C19 genetic polymorphisms in a Korean population using a simultaneous multiplex pyrosequencing method to simultaneously detect the CYP2C19*2, CYP2C19*3, and CYP2C19*17 alleles. J Clin Pharm Ther 35(6):697–703. doi: 10.1111/j.1365-2710.2009.01069.x PubMedCrossRefGoogle Scholar
  22. 22.
    Pati N, Schowinsky V, Kokanovic O, Magnuson V, Ghosh S (2004) A comparison between SNaPshot, pyrosequencing, and biplex invader SNP genotyping methods: accuracy, cost, and throughput. J Biochem Biophys Methods 60(1):1–12. doi: 10.1016/j.jbbm.2003.11.005 PubMedCrossRefGoogle Scholar
  23. 23.
    Pourmand N, Elahi E, Davis RW, Ronaghi M (2002) Multiplex Pyrosequencing. Nucleic Acids Res 30(7):e31PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Takahashi H, Echizen H (2001) Pharmacogenetics of warfarin elimination and its clinical implications. Clin Pharmacokinet 40(8):587–603PubMedCrossRefGoogle Scholar
  25. 25.
    Sanderson S, Emery J, Higgins J (2005) CYP2C9 gene variants, drug dose, and bleeding risk in warfarin-treated patients: a HuGEnet systematic review and meta-analysis. Genet Med 7(2):97–104PubMedCrossRefGoogle Scholar
  26. 26.
    Aynacioglu AS, Brockmoller J, Bauer S, Sachse C, Guzelbey P, Ongen Z, Nacak M, Roots I (1999) Frequency of cytochrome P450 CYP2C9 variants in a Turkish population and functional relevance for phenytoin. Br J Clin Pharmacol 48(3):409–415PubMedCrossRefGoogle Scholar
  27. 27.
    Stubbins MJ, Harries LW, Smith G, Tarbit MH, Wolf CR (1996) Genetic analysis of the human cytochrome P450 CYP2C9 locus. Pharmacogenetics 6(5):429–439PubMedCrossRefGoogle Scholar
  28. 28.
    Rettie AE, Farin FM, Beri NG, Srinouanprachanh SL, Rieder MJ, Thijssen HH (2006) A case study of acenocoumarol sensitivity and genotype-phenotype discordancy explained by combinations of polymorphisms in VKORC1 and CYP2C9. Br J Clin Pharmacol 62(5):617–620. doi: 10.1111/j.1365-2125.2006.02688.x PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Yoshizawa M, Hayashi H, Tashiro Y, Sakawa S, Moriwaki H, Akimoto T, Doi O, Kimura M, Kawarasaki Y, Inoue K, Itoh K (2009) Effect of VKORC1-1639 G > A polymorphism, body weight, age and serum albumin alterations on warfarin response in Japanese patients. Thromb Res 124(2):161–166. doi: 10.1016/j.thromres.2008.11.011 PubMedCrossRefGoogle Scholar
  30. 30.
    Biss TT, Avery PJ, Williams MD, Brandao LR, Grainger JD, Kamali F (2013) The VKORC1 and CYP2C9 genotypes are associated with over-anticoagulation during initiation of warfarin therapy in children. J Thromb Haemost 11(2):373–375. doi: 10.1111/jth.12072 PubMedCrossRefGoogle Scholar
  31. 31.
    Suriapranata IM, Tjong WY, Wang T, Utama A, Raharjo SB, Yuniadi Y, Tai SS (2011) Genetic factors associated with patient-specific warfarin dose in ethnic Indonesians. BMC Med Genet 12:80. doi: 10.1186/1471-2350-12-80 PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Wells PS, Majeed H, Kassem S, Langlois N, Gin B, Clermont J, Taljaard M (2010) A regression model to predict warfarin dose from clinical variables and polymorphisms in CYP2C9, CYP4F2, and VKORC1: derivation in a sample with predominantly a history of venous thromboembolism. Thromb Res 125(6):e259–e264. doi: 10.1016/j.thromres.2009.11.020 PubMedCrossRefGoogle Scholar
  33. 33.
    Ward NC, Tsai IJ, Barden A, van Bockxmeer FM, Puddey IB, Hodgson JM, Croft KD (2008) A single nucleotide polymorphism in the CYP4F2 but not CYP4A11 gene is associated with increased 20-HETE excretion and blood pressure. Hypertension 51(5):1393–1398. doi: 10.1161/HYPERTENSIONAHA.107.104463 PubMedCrossRefGoogle Scholar
  34. 34.
    Fava C, Montagnana M, Almgren P, Rosberg L, Lippi G, Hedblad B, Engstrom G, Berglund G, Minuz P, Melander O (2008) The V433 M variant of the CYP4F2 is associated with ischemic stroke in male Swedes beyond its effect on blood pressure. Hypertension 52(2):373–380. doi: 10.1161/HYPERTENSIONAHA.108.114199 PubMedCrossRefGoogle Scholar
  35. 35.
    Stec DE, Roman RJ, Flasch A, Rieder MJ (2007) Functional polymorphism in human CYP4F2 decreases 20-HETE production. Physiol Genomics 30(1):74–81. doi: 10.1152/physiolgenomics.00003.2007 PubMedCrossRefGoogle Scholar
  36. 36.
    Biss TT, Kamali F (2012) Warfarin anticoagulation in children: is there a role for a personalized approach to dosing? Pharmacogenomics 13(11):1211–1214. doi: 10.2217/pgs.12.92 PubMedCrossRefGoogle Scholar
  37. 37.
    Lee KE, Chang BC, Kim HO, Yoon IK, Lee NR, Park HY, Gwak HS (2012) Effects of CYP4F2 gene polymorphisms on warfarin clearance and sensitivity in Korean patients with mechanical cardiac valves. Ther Drug Monit 34(3):275–282. doi: 10.1097/FTD.0b013e318256a77c PubMedCrossRefGoogle Scholar
  38. 38.
    Choi JR, Kim JO, Kang DR, Yoon SA, Shin JY, Zhang X, Roh MO, Hong HJ, Wang YP, Jo KH, Lee KS, Yun HJ, Oh YS, Yoo KD, Jeon HG, Lee YS, Kang TS, Park HJ, Chung MW, Kang JH (2011) Proposal of pharmacogenetics-based warfarin dosing algorithm in Korean patients. J Hum Genet 56(4):290–295. doi: 10.1038/jhg.2011.4 PubMedCrossRefGoogle Scholar
  39. 39.
    Cerezo-Manchado JJ, Rosafalco M, Anton AI, Perez-Andreu V, Garcia-Barbera N, Martinez AB, Corral J, Vicente V, Gonzalez-Conejero R, Roldan V (2013) Creating a genotype-based dosing algorithm for acenocoumarol steady dose. Thromb Haemost 109(1):146–153. doi: 10.1160/TH12-08-0631 PubMedCrossRefGoogle Scholar
  40. 40.
    Teichert M, Eijgelsheim M, Uitterlinden AG, Buhre PN, Hofman A, De Smet PA, Visser LE, Stricker BH (2011) Dependency of phenprocoumon dosage on polymorphisms in the VKORC1, CYP2C9, and CYP4F2 genes. Pharmacogenet Genomics 21(1):26–34. doi: 10.1097/FPC.0b013e32834154fb PubMedCrossRefGoogle Scholar
  41. 41.
    Shalia KK, Doshi SM, Parikh S, Pawar PP, Divekar SS, Varma SP, Mehta R, Doctor T, Shah VK, Saranath D (2012) Prevalence of VKORC1 and CYP2C9 gene polymorphisms in Indian population and its effect on warfarin response. J Assoc Physicians India 60:34–38PubMedGoogle Scholar
  42. 42.
    Sullivan-Klose TH, Ghanayem BI, Bell DA, Zhang ZY, Kaminsky LS, Shenfield GM, Miners JO, Birkett DJ, Goldstein JA (1996) The role of the CYP2C9-Leu359 allelic variant in the tolbutamide polymorphism. Pharmacogenetics 6(4):341–349PubMedCrossRefGoogle Scholar
  43. 43.
    Biss TT, Avery PJ, Brandao LR, Chalmers EA, Williams MD, Grainger JD, Leathart JB, Hanley JP, Daly AK, Kamali F (2012) VKORC1 and CYP2C9 genotype and patient characteristics explain a large proportion of the variability in warfarin dose requirement among children. Blood 119(3):868–873. doi: 10.1182/blood-2011-08-372722 PubMedCrossRefGoogle Scholar
  44. 44.
    Kumar DK, Shewade DG, Manjunath S, Ushakiran P, Reneega G, Adithan C (2013) Inter and intra ethnic variation of vitamin K epoxide reductase complex and cytochrome P450 4F2 genetic polymorphisms and their prevalence in South Indian population. Indian J Hum Genet 19(3):301–310. doi: 10.4103/0971-6866.120817 PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Fu Z, Nakayama T, Sato N, Izumi Y, Kasamaki Y, Shindo A, Ohta M, Soma M, Aoi N, Sato M, Matsumoto K, Ozawa Y, Ma Y (2008) Haplotype-based case-control study of the human CYP4F2 gene and essential hypertension in Japanese subjects. Hypertens Res 31(9):1719–1726. doi: 10.1291/hypres.31.1719 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Kyoung-Ah Kim
    • 1
  • Wan-Geun Song
    • 1
  • Hae-Mi Lee
    • 1
  • Hyun-Jin Joo
    • 1
  • Ji-Young Park
    • 1
  1. 1.Department of Clinical Pharmacology and Toxicology, Anam HospitalKorea University College of MedicineSeoulKorea

Personalised recommendations