Skip to main content
Log in

Identification and expression analysis of salt-responsive genes using a comparative microarray approach in Salix matsudana

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Salt stress exerts negative effects on plant growth, development and yields, with roots being the primary site of both perception and damage. Salix matsudana (Chinese willow) is tolerant of high salinity. However, genes associated with this trait were rarely characterized. Therefore, we first performed salt-stress treatment on S. matsudana plants, then identified differentially expressed genes by comparison of salt-treated roots and untreated controls using microarray analysis. A total of 403 salt-responsive genes were identified, of which 239 were repressed and 164 were up-regulated. Functional classification analysis revealed that these genes belonged to families encoding proteins involved in metabolism, regulation of transcription, signal transduction, hormone responses, abiotic stress responses, and other processes related to growth and development. This suggested that when S. matsudana was confronted with salt stress, coordinated adjustments are made to physiological and biochemical processes, which would then allow more resources to be allocated to protective mechanisms to avoid salt injury. The expression patterns of representative genes were further validated and the diversity of the temporal profiles indicated that a combination of several genes and the initiation of diverse pathways performed functions in S. matsudana salt tolerance. This work represents the first study employing microarrays to investigate salt tolerance in S. matsudana. The data presented herein enhance our understanding of the molecular mechanisms of S. matsudana responses to salinity stress and lay the groundwork for genetic engineering strategies to improve stress tolerance of agronomically important species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

DEG:

Differentially expressed gene

qRT-PCR:

Quantitative real-time PCR

References

  1. Shabala S, Cuin TA (2008) Potassium transport and plant salt tolerance. Physiol Plant 133:651–669. doi:10.1111/j.1399-3054.2007.01008.x

    Article  CAS  PubMed  Google Scholar 

  2. Chinnusamy V, Zhu J, Zhu JK (2006) Salt stress signaling and mechanisms of plant salt tolerance. Genet Eng 27:141–177. doi:10.1007/0-387-25856-6_9

    Article  CAS  Google Scholar 

  3. Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681. doi:10.1146/annurev.arplant.59.032607.092911

    Article  CAS  PubMed  Google Scholar 

  4. Ashraf M (2009) Biotechnological approach of improving plant salt tolerance using antioxidants as markers. Biotechnol Adv 27:84–93. doi:10.1016/j.biotechadv.2008.09.003

    Article  CAS  PubMed  Google Scholar 

  5. Chen S, Polle A (2010) Salinity tolerance of Populus. Plant Biol 12:317–333. doi:10.1111/j.1438-8677.2009.00301.x

    Article  CAS  PubMed  Google Scholar 

  6. Nishiyama R, Le DT, Watanabe Y, Matsui A, Tanaka M, Seki M, Yamaguchi-Shinozaki K, Shinozaki K, Tran LS (2012) Transcriptome analyses of a salt-tolerant cytokinin-deficient mutant reveal differential regulation of salt stress response by cytokinin deficiency. PLoS One 7:e32124. doi:10.1371/journal.pone.0032124

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Umezawa T, Fujita M, Fujita Y, Yamaguchi-Shinozaki K, Shinozaki K (2006) Engineering drought tolerance in plants: discovering and tailoring genes to unlock the future. Curr Opin Biotechnol 17:113–122. doi:10.1016/j.copbio.2006.02.002

    Article  CAS  PubMed  Google Scholar 

  8. Ward JM, Hirschi KD, Sze H (2003) Plants pass the salt. Trends Plant Sci 8:200–201. doi:10.1016/S1360-1385(03)00059-1

    Article  CAS  PubMed  Google Scholar 

  9. Nishiyama R, Watanabe Y, Fujita Y, Le DT, Kojima M, Werner T, Vankova R, Yamaguchi-Shinozaki K, Shinozaki K, Kakimoto T, Sakakibara H, Schmülling T, Tran LS (2011) Analysis of cytokinin mutants and regulation of cytokinin metabolic genes reveals important regulatory roles of cytokinins in drought, salt and abscisic acid responses, and abscisic acid biosynthesis. Plant Cell 23:2169–2183. doi:10.1105/tpc.111.087395

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Krasensky J, Jonak C (2012) Drought, salt, and temperature stress-induced metabolic rearrangements and regulatory networks. J Exp Bot 63:1593–1608. doi:10.1093/jxb/err460

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Sanchez-Barrena MJ, Martinez-Ripoll M, Zhu JK, Albert A (2005) The structure of the Arabidopsis thaliana SOS3: molecular mechanism of sensing calcium for salt stress response. J Mol Biol 345:1253–1264. doi:10.1016/j.jmb.2004.11.025

    Article  CAS  PubMed  Google Scholar 

  12. Nakagami H, Pitzschke A, Hirt H (2005) Emerging MAP kinase pathways in plant stress signaling. Trends in Plant Sci 10:339–346. doi:10.1016/j.tplants.2005.05.009

    Article  CAS  Google Scholar 

  13. Xiong L, Schumaker KS, Zhu JK (2002) Cell signaling during cold, drought, and salt stress. Plant Cell 14:S165–S183. doi:10.1105/tpc.000596

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Ludwig AA, Saitoh H, Felix G, Freymark G, Miersch O, Wasternack C, Boller T, Jones JD, Romeis T (2005) Ethylenemediated cross-talk between calcium-dependent protein kinase and MAPK signaling controls stress responses in plants. Proc Natl Acad Sci 102:10736–10741. doi:10.1073/pnas.0502954102

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Ma S, Gong Q, Bohnert HJ (2006) Dissecting salt stress pathways. J Exp Bot 57:1097–1107. doi:10.1093/jxb/erj098

    Article  CAS  PubMed  Google Scholar 

  16. Galvan-Ampudia CS, Testerink C (2011) Salt stress signals shape the plant root. Can J Plant Sci 85: 815-827. Curr Opin Plant Biol 14(3):296–302. doi:10.1016/j.pbi.2011.03.019

    Article  CAS  PubMed  Google Scholar 

  17. Hodge A, Berta G, Doussan C, Merchan F, Crespi M (2009) Plant root growth, architecture and function. Plant Soil 321:153–187. doi:10.1007/s11104-009-9929-9

    Article  CAS  Google Scholar 

  18. Leyser O (2006) Dynamic integration of auxin transport and signaling. Curr Biol 16:R424–R433. doi:10.1016/j.cub.2006.05.014

    Article  CAS  PubMed  Google Scholar 

  19. Birnbaum K, Benfey PN (2004) Network building: transcriptional circuits in the root. Curr Opin Plant Biol 7:582–588. doi:10.1016/j.pbi.2004.07.010

    Article  CAS  PubMed  Google Scholar 

  20. Tuskan GA, Difazio S, Jansson S, Bohlmann J, Grigoriev I et al (2006) The genome of black cottonwood, Populus trichocarpa (Torr. & Gray). Science 313:1596–1604. doi:10.1126/science.1128691

    Article  CAS  PubMed  Google Scholar 

  21. Zhou J, Liu M, Jiang J, Qiao G, Lin S, Li H, Xie L, Zhuo R (2012) Expression profile of miRNAs in Populus cathayana L. and Salix matsudana Koidz under salt stress. Mol Biol Rep 39:8645–8654. doi:10.1007/s11033-012-1719-4

    Article  CAS  PubMed  Google Scholar 

  22. Conesa A, Götz S (2008) Blast2GO: a comprehensive suite for functional analysis in plant genomics. Int J Plant Genomics 2008:619832. doi:10.1155/2008/619832

    Article  PubMed Central  PubMed  Google Scholar 

  23. Kanehisa M, Goto S (2000) KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res 28:27–30. doi:10.1093/nar/28.1.27

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Yuan H, Meng X, Gao Q, Qu W, Xu T, Xu Z, Song R (2011) The characterization of two peroxir edoxin genes in Dunaliella viridis provides insights into antioxidative response to salt stress. Plant Cell Rep 30:1503–1512. doi:10.1007/s00299-011-1060-8

    Article  CAS  PubMed  Google Scholar 

  25. Rushton PJ, Somssich IE (1998) Transcriptional control of plant genes responsive to pathogens. Curr Opin Plant Biol 1:311–315. doi:10.1016/1369-5266(88)80052-9

    Article  CAS  PubMed  Google Scholar 

  26. Vinocur B, Altman A (2005) Recent advances in engineering plant tolerance to abiotic stress: achievements and limitations. Curr Opin Biotechnol 16:123–132. doi:10.1016/j.copbio.2005.02.001

    Article  CAS  PubMed  Google Scholar 

  27. Yamaguchi-Shinozaki K, Shinozaki K (2006) Transcriptional regulatory networks in cellular responses and tolerance to dehydration and cold stresses. Annu Rev Plant Biol 57:781–803. doi:10.1146/annurev.arplant.57.032905.105444

    Article  CAS  PubMed  Google Scholar 

  28. Murata N, Suzuki I (2006) Exploitation of genomic sequences in a systematic analysis to access how cyanobacteria sense environmental stress. J Exp Bot 57:235–247. doi:10.1093/jxb/erj005

    Article  CAS  PubMed  Google Scholar 

  29. Karan RL, Singla-Pareek S, Pareek A (2009) Histidine kinase and response regulator genes as they relate to salinity tolerance in rice. Funct Integr Genomics 9:411–417. doi:10.1007/s10142-009-0119-x

    Article  CAS  PubMed  Google Scholar 

  30. Chao DY, Luo YH, Shi M, Luo D, Lin HX (2005) Salt-responsive genes in rice revealed by cDNA microarray analysis. Cell Res 15:796–810. doi:10.1038/sj.cr.7290349

    Article  CAS  PubMed  Google Scholar 

  31. Richardt S, Timmerhaus G, Lang D, Qudeimat E, Corrêa LG, Reski R, Rensing SA, Frank W (2010) Microarray analysis of the moss Physcomitrella patens reveals evolutionarily conserved transcriptional regulation of salt stress and abscisic acid signalling. Plant Mol Biol 72:27–45. doi:10.1007/s11103-009-9550-6

    Article  CAS  PubMed  Google Scholar 

  32. Lorenz WW, Alba R, Yu YS, Bordeaux JM, Simões M, Dean JF (2011) Microarray analysis and scale-free gene networks identify candidate regulators in drought-stressed roots of loblolly pine (P. taeda L.). BMC Genom 12:264. doi:10.1186/1471-2164-12-264

    Article  CAS  Google Scholar 

  33. Liu Y, Ji X, Zheng L, Nie X, Wang Y (2013) Microarray analysis of transcriptional responses to abscisic acid and salt stress in Arabidopsis thaliana. Int J Mol Sci 14:9979–9998. doi:10.3390/ijms14059979

    Article  PubMed Central  PubMed  Google Scholar 

  34. Liu J, Yin T, Ye N, Chen Y, Yin T, Liu M, Hassani D (2013) Transcriptome analysis of the differentially expressed genes in the male and female shrub willows (Salix suchowensis). PLoS One 8:e60181. doi:10.1371/journal.pone.0060181

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Xu X, Zhang Y, Williams J, Antoniou E, McCombie WR, Wu S, Zhu W, Davidson NO, Denoya P, Li E (2013) Parallel comparison of Illumina RNA-Seq and Affymetrix microarray platforms on transcriptomic profiles generated from 5-aza-deoxy-cytidine treated HT-29 colon cancer cells and simulated datasets. BMC Bioinformatics 14(Suppl 9):S1. doi:10.1186/1471-2105-14-S9-S1

    Article  PubMed Central  PubMed  Google Scholar 

  36. Kogenaru S, Qing Y, Guo Y, Wang N (2012) RNA-seq and microarray complement each other in transcriptome profiling. BMC Genom 13:629. doi:10.1186/1471-2164-13-629

    Article  CAS  Google Scholar 

  37. Qiu Q, Ma T, Hu Q, Liu B, Wu Y, Zhou H, Wang Q, Wang J, Liu J (2011) Genome-scale transcriptome analysis of the desert poplar, Populus euphratica. Tree Physiol 31:452–461. doi:10.1093/treephys/tpr015

    Article  PubMed  Google Scholar 

  38. Li Q, Liu J, Tan D, Allan AC, Jiang Y, Xu X, Han Z, Kong J (2013) A genome-wide expression profile of salt-responsive genes in the apple rootstock malus zumi. Int J Mol Sci 14:21053–21070

    Article  PubMed Central  PubMed  Google Scholar 

  39. Chen H, Lai Z, Shi J, Xiao Y, Chen Z, Xu X (2010) Roles of Arabidopsis WRKY18, WRKY40 and WRKY60 transcription factors in plant responses to abscisic acid and abiotic stress. BMC Plant Biol 10:281. doi:10.1186/1471-2229-10-281

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Li J, Brader G, Kariola T, Palva ET (2006) WRKY70 modulates the selection of signaling pathways in plant defense. Plant J 46:477–491. doi:10.1111/j.1365-313X.2006.02712.x

    Article  CAS  PubMed  Google Scholar 

  41. Journot-Catalino N, Somssich IE, Roby D, Kroj T (2006) The transcription factors WRKY11 and WRKY17 act as negative regulators of basal resistance in Arabidopsis thaliana. Plant Cell 18:3289–3302

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Yao D, Zhang X, Zhao X, Liu C, Wang C, Zhang Z, Zhang C, Wei Q, Wang Q, Yan H, Li F, Su Z (2011) Transcriptome analysis reveals salt-stress-regulated biological processes and key pathways in roots of cotton (Gossypium hirsutum L.). Genomics 98:45–47. doi:10.1016/j.ygeno.2011.04.007

    Article  Google Scholar 

  43. Wang C, Deng P, Chen L, Wang X, Ma H, Hu W, Yao N, Feng Y, Chai R, Yang G, He G (2013) A wheat WRKY transcription factor TaWRKY10 confers tolerance to multiple abiotic stresses in transgenic tobacco. PLoS One 8(6):e65120. doi:10.1371/journal.pone.0065120

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. Ma HS, Liang D, Shuai P, Xia XL, Yin WL (2010) The salt- and drought-inducible poplar GRAS protein SCL7 confers salt and drought tolerance in Arabidopsis thaliana. J Exp Bot 61:4011–4019. doi:10.1093/jxb/erq217

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  45. Olsen AN, Ernst HA, Leggio LL, Skriver K (2005) NAC transcription factors: structurally distinct, functionally diverse. Trends Plant Sci 10:79–87. doi:10.1016/j.tplants.2004.12.010

    Article  CAS  PubMed  Google Scholar 

  46. Guo HS, Xie Q, Fei JF, Chua NH (2005) MicroRNA directs mRNA cleavage of the transcription factor NAC1 to down regulate auxin signals for Arabidopsis lateral root development. Plant Cell 17:1376–1386. doi:10.1105/tpc.105.030841

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  47. Yang R, Deng C, Ouyang B, Ye Z (2011) Molecular analysis of two salt-responsive NAC-family genes and their expression analysis in tomato. Mol Biol Rep 38:857–863. doi:10.1007/s11033-010-0177-0

    Article  CAS  PubMed  Google Scholar 

  48. Ramegowda V, Senthil-Kumar M, Nataraja KN, Reddy MK, Mysore KS, Udayakumar M (2012) Expression of a finger millet transcription factor, EcNAC1, in tobacco confers abiotic stress-tolerance. PLoS One 7:e40397. doi:10.1371/journal.pone.0040397

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  49. Zhong H, Guo QQ, Chen L, Ren F, Wang QQ, Zheng Y, Li XB (2012) Two Brassica napus genes encoding NAC transcription factors are involved in response to high-salinity stress. Plant Cell Rep 31:1991–2003. doi:10.1007/s00299-012-1311-3

    Article  CAS  PubMed  Google Scholar 

  50. He XJ, Mu RL, Cao WH, Zhang ZG, Zhang JS, Chen SY (2005) AtNAC2, a transcription factor downstream of ethylene and auxin signaling pathways, is involved in salt stress response and lateral root development. Plant J 44:903–916. doi:10.1111/j.1365-313X.2005.02575.x

    Article  CAS  PubMed  Google Scholar 

  51. Han Q, Zhang J, Li H, Luo Z, Ziaf K, Ouyang B, Wang T, Ye Z (2012) Identification and expression pattern of one stress-responsive NAC gene from Solanum lycopersicum. Mol Biol Rep 39:1713–1720. doi:10.1007/s11033-011-0911-2

    Article  CAS  PubMed  Google Scholar 

  52. Singh K, Foley RC, Oñate-Sánchez L (2002) Transcription factors in plant defense and stress responses. Curr Opin Plant Biol 5:430–436. doi:10.1016/S1369-5266(02)00289-3

    Article  CAS  PubMed  Google Scholar 

  53. Chen T, Yang Q, Gruber M, Kang J, Sun Y, Ding W, Zhang T, Zhang X (2012) Expression of an alfalfa (Medicago sativa L.) ethylene response factor gene MsERF8 in tobacco plants enhances resistance to salinity. Mol Biol Rep 39:6067–6075. doi:10.1007/s11033-011-1421-y

    Article  CAS  PubMed  Google Scholar 

  54. Zhai Y, Wang Y, Li Y, Lei T, Yan F, Su L, Li X, Zhao Y, Sun X, Li J, Wang Q (2013) Isolation and molecular characterization of GmERF7, a soybean ethylene-response factor that increases salt stress tolerance in tobacco. Gene 513:174–183. doi:10.1016/j.gene.2012.10.018

    Article  CAS  PubMed  Google Scholar 

  55. Ma Y, Szostkiewicz I, Korte A, Moes D, Yang Y, Christmann A, Grill E (2009) Regulators of PP2C phosphatase activity function as abscisic acid sensors. Science 324:1064–1068. doi:10.1126/science.1172408

    CAS  PubMed  Google Scholar 

  56. Zhang Z, Barlow JN, Baldwin JE, Schofield CJ (1997) Metal-catalyzed oxidation and mutagenesis studies on the iron (II) binding site of 1-aminocyclopropane-1-carboxylate oxidase. Biochemistry 36:15999–16007. doi:10.1021/bi971823c

    Article  CAS  PubMed  Google Scholar 

  57. Wang G, Pichersky E (2007) Nicotinamidase participates in the salvage pathway of NAD biosynthesis in Arabidopsis. Plant J 49:1020–1029. doi:10.1111/j.1365-313X.2006.03013.x

    Article  CAS  PubMed  Google Scholar 

  58. Chong ZZ, Kang JQ, Maiese K (2004) AKT1 drives endothelial cell membrane asymmetry and microglial activation through Bcl-xL and caspases 1, 3 and 9. Exp Cell Res 296:196–207. doi:10.1016/j.yexcr.2004.01.02

    Article  CAS  PubMed  Google Scholar 

  59. Chen JH, Jiang HW, Hsieh EJ, Chen HY, Chien CT, Hsieh HL, Lin TP (2012) Drought and salt stress tolerance of an Arabidopsis glutathione S-transferase U17 knockout mutant are attributed to the combined effect of glutathione and abscisic acid. Plant Physiol 158(1):340–351. doi:10.1104/pp.111.181875

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  60. Li G, Peng X, Wei L, Kang G (2013) Salicylic acid increases the contents of glutathione and ascorbate and temporally regulates the related gene expression in salt-stressed wheat seedlings. Gene 529(2):321–325. doi:10.1016/j.gene.2013.07.093

    Article  CAS  PubMed  Google Scholar 

  61. Roxas VP, Lodhi SA, Garrett DK, Mahan JR, Allen RD (2000) Stress tolerance in transgenic tobacco seedlings that overexpress glutathione S-transferase/glutathione peroxidase. Plant Cell Physiol 41:1229–1234. doi:10.1093/pcp/pcd051

    Article  CAS  PubMed  Google Scholar 

  62. Edwards R, Dixon DP (2005) Plant glutathione transferases. Methods Enzymol 401:169–186. doi:10.1139/B07-033

    Article  CAS  PubMed  Google Scholar 

  63. Hincha DK, Hagemann M (2004) Stabilization of model membranes during drying by compatible solutes involved in the stress tolerance of plants and microorganisms. Biochem J 383:277–283. doi:10.1042/BJ20040746

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  64. Toldi O, Tuba Z, Scott P (2009) Vegetative desiccation tolerance: is it a goldmine for bioengineering crops? Plant Sci 176:187–199. doi:10.1016/j.plantsci.2008.10.002

    Article  CAS  Google Scholar 

  65. Sun Z, Qi X, Wang Z, Li P, Wu C, Zhang H, Zhao Y (2013) Overexpression of TsGOLS2, a galactinol synthase, in Arabidopsis thaliana enhances tolerance to high salinity and osmotic stresses. Plant Physiol Biochem 69:82–89. doi:10.1016/j.plaphy.2013.04.009

    Article  CAS  PubMed  Google Scholar 

  66. Wang HX, Ng TB (2006) Concurrent isolation of a Kunitz-type trypsin inhibitor with antifungal activity and a novel lectin from Pseudostellaria heterophylla roots. Biochem Biophys Res Commun 342:349–353. doi:10.1016/j.bbrc.2006.01.109

    Article  CAS  PubMed  Google Scholar 

  67. Park Y, Choi BH, Kwak JS, Kang CW, Lim HT, Cheong HS, Hahm KS (2005) Kunitz-type serine protease inhibitor from potato (Solanum tuberosum L. cv. Jopung). J Agric Food Chem 53:6491–6496. doi:10.1021/jf0505123

    Article  CAS  PubMed  Google Scholar 

  68. Ledoigt G, Griffaut B, Debiton E, Vian C, Mustel A, Evray G, Maurizis JC, Madelmont JC (2006) Analysis of secreted protease inhibitors after water stress in potato tubers. Int J Biol Macromol 38:268–271. doi:10.1016/j.ijbiomac.2006.03.016

    Article  CAS  PubMed  Google Scholar 

  69. Jiang Y, Deyholos MK (2006) Comprehensive transcriptional profiling of NaCl-stressed Arabidopsis roots reveals novel classes of responsive genes. BMC Plant Biol 6:25. doi:10.1186/1471-2229-6-25

    Article  PubMed Central  PubMed  Google Scholar 

  70. Sahi C, Singh A, Blumwald E, Grover A (2006) Beyond osmolytes and transporters: novel plant salt-stress tolerance-related genes from transcriptional profiling data. Physiol Plantarum 127:1–9. doi:10.1111/j.1399-3054.2005.00610.x

    Article  CAS  Google Scholar 

  71. Nakashima K, Ito Y, Yamaguchi-Shinozaki K (2009) Transcriptional regulatory networks in response to abiotic stresses in Arabidopsis and grasses. Plant Physiol 149:88–95. doi:10.1104/pp.108.129791

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  72. Zhang X, Zhen JB, Li Z, Kang D, Yang Y, Kong J, Hua JP (2011) Expression profile of early responsive genes under salt stress in upland cotton (Gossypium hirsutum L.). Plant Mol Biol Rep 29:626–637. doi:10.1007/s11105-010-0269-y

    Article  Google Scholar 

Download references

Acknowledgments

We thank the anonymous referees and the editor for their comments and suggestions that helped improve the manuscript. We also thank Cuiyun Li and Huiqin Yang for their assistance in performing the experiments.

Funding

This work was supported by the State Key Development Program for Basic Research of China (Grant No. 2012CB114500-4), the National High Technology Research and Development Program of China (No. 2011AA100201), the National Natural Science Foundation of China (No. 31200465), and the Basic Scientific Research Project of Nonprofit Central Research Institutions (No. AFYBB2012040 and CAFYBB2011001).

The authors have declared that no competing interests exist.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renying Zhuo.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, M., Qiao, G., Jiang, J. et al. Identification and expression analysis of salt-responsive genes using a comparative microarray approach in Salix matsudana . Mol Biol Rep 41, 6555–6568 (2014). https://doi.org/10.1007/s11033-014-3539-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-014-3539-1

Keywords

Navigation