Molecular Biology Reports

, Volume 41, Issue 10, pp 6555–6568 | Cite as

Identification and expression analysis of salt-responsive genes using a comparative microarray approach in Salix matsudana

  • Mingying Liu
  • Guirong Qiao
  • Jing Jiang
  • Xiaojiao Han
  • Jian Sang
  • Renying Zhuo


Salt stress exerts negative effects on plant growth, development and yields, with roots being the primary site of both perception and damage. Salix matsudana (Chinese willow) is tolerant of high salinity. However, genes associated with this trait were rarely characterized. Therefore, we first performed salt-stress treatment on S. matsudana plants, then identified differentially expressed genes by comparison of salt-treated roots and untreated controls using microarray analysis. A total of 403 salt-responsive genes were identified, of which 239 were repressed and 164 were up-regulated. Functional classification analysis revealed that these genes belonged to families encoding proteins involved in metabolism, regulation of transcription, signal transduction, hormone responses, abiotic stress responses, and other processes related to growth and development. This suggested that when S. matsudana was confronted with salt stress, coordinated adjustments are made to physiological and biochemical processes, which would then allow more resources to be allocated to protective mechanisms to avoid salt injury. The expression patterns of representative genes were further validated and the diversity of the temporal profiles indicated that a combination of several genes and the initiation of diverse pathways performed functions in S. matsudana salt tolerance. This work represents the first study employing microarrays to investigate salt tolerance in S. matsudana. The data presented herein enhance our understanding of the molecular mechanisms of S. matsudana responses to salinity stress and lay the groundwork for genetic engineering strategies to improve stress tolerance of agronomically important species.


Salix matsudana Salt tolerance Microarray Salt-responsive genes 



Differentially expressed gene


Quantitative real-time PCR



We thank the anonymous referees and the editor for their comments and suggestions that helped improve the manuscript. We also thank Cuiyun Li and Huiqin Yang for their assistance in performing the experiments.


This work was supported by the State Key Development Program for Basic Research of China (Grant No. 2012CB114500-4), the National High Technology Research and Development Program of China (No. 2011AA100201), the National Natural Science Foundation of China (No. 31200465), and the Basic Scientific Research Project of Nonprofit Central Research Institutions (No. AFYBB2012040 and CAFYBB2011001).

The authors have declared that no competing interests exist.

Supplementary material

11033_2014_3539_MOESM1_ESM.rar (4.2 mb)
Table S1 List of salt-responsive genes identified by microarray assay (XLS). (RAR 4292 kb)
11033_2014_3539_MOESM2_ESM.xls (75 kb)
Table S2 List of salt-responsive genes annotated according to the GO database (XLS). (XLS 75 kb)
11033_2014_3539_MOESM3_ESM.xls (41 kb)
Table S3 List of salt-responsive genes annotated by KEGG analysis (XLS). (XLS 41 kb)


  1. 1.
    Shabala S, Cuin TA (2008) Potassium transport and plant salt tolerance. Physiol Plant 133:651–669. doi: 10.1111/j.1399-3054.2007.01008.x CrossRefPubMedGoogle Scholar
  2. 2.
    Chinnusamy V, Zhu J, Zhu JK (2006) Salt stress signaling and mechanisms of plant salt tolerance. Genet Eng 27:141–177. doi: 10.1007/0-387-25856-6_9 CrossRefGoogle Scholar
  3. 3.
    Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681. doi: 10.1146/annurev.arplant.59.032607.092911 CrossRefPubMedGoogle Scholar
  4. 4.
    Ashraf M (2009) Biotechnological approach of improving plant salt tolerance using antioxidants as markers. Biotechnol Adv 27:84–93. doi: 10.1016/j.biotechadv.2008.09.003 CrossRefPubMedGoogle Scholar
  5. 5.
    Chen S, Polle A (2010) Salinity tolerance of Populus. Plant Biol 12:317–333. doi: 10.1111/j.1438-8677.2009.00301.x CrossRefPubMedGoogle Scholar
  6. 6.
    Nishiyama R, Le DT, Watanabe Y, Matsui A, Tanaka M, Seki M, Yamaguchi-Shinozaki K, Shinozaki K, Tran LS (2012) Transcriptome analyses of a salt-tolerant cytokinin-deficient mutant reveal differential regulation of salt stress response by cytokinin deficiency. PLoS One 7:e32124. doi: 10.1371/journal.pone.0032124 PubMedCentralCrossRefPubMedGoogle Scholar
  7. 7.
    Umezawa T, Fujita M, Fujita Y, Yamaguchi-Shinozaki K, Shinozaki K (2006) Engineering drought tolerance in plants: discovering and tailoring genes to unlock the future. Curr Opin Biotechnol 17:113–122. doi: 10.1016/j.copbio.2006.02.002 CrossRefPubMedGoogle Scholar
  8. 8.
    Ward JM, Hirschi KD, Sze H (2003) Plants pass the salt. Trends Plant Sci 8:200–201. doi: 10.1016/S1360-1385(03)00059-1 CrossRefPubMedGoogle Scholar
  9. 9.
    Nishiyama R, Watanabe Y, Fujita Y, Le DT, Kojima M, Werner T, Vankova R, Yamaguchi-Shinozaki K, Shinozaki K, Kakimoto T, Sakakibara H, Schmülling T, Tran LS (2011) Analysis of cytokinin mutants and regulation of cytokinin metabolic genes reveals important regulatory roles of cytokinins in drought, salt and abscisic acid responses, and abscisic acid biosynthesis. Plant Cell 23:2169–2183. doi: 10.1105/tpc.111.087395 PubMedCentralCrossRefPubMedGoogle Scholar
  10. 10.
    Krasensky J, Jonak C (2012) Drought, salt, and temperature stress-induced metabolic rearrangements and regulatory networks. J Exp Bot 63:1593–1608. doi: 10.1093/jxb/err460 PubMedCentralCrossRefPubMedGoogle Scholar
  11. 11.
    Sanchez-Barrena MJ, Martinez-Ripoll M, Zhu JK, Albert A (2005) The structure of the Arabidopsis thaliana SOS3: molecular mechanism of sensing calcium for salt stress response. J Mol Biol 345:1253–1264. doi: 10.1016/j.jmb.2004.11.025 CrossRefPubMedGoogle Scholar
  12. 12.
    Nakagami H, Pitzschke A, Hirt H (2005) Emerging MAP kinase pathways in plant stress signaling. Trends in Plant Sci 10:339–346. doi: 10.1016/j.tplants.2005.05.009 CrossRefGoogle Scholar
  13. 13.
    Xiong L, Schumaker KS, Zhu JK (2002) Cell signaling during cold, drought, and salt stress. Plant Cell 14:S165–S183. doi: 10.1105/tpc.000596 PubMedCentralCrossRefPubMedGoogle Scholar
  14. 14.
    Ludwig AA, Saitoh H, Felix G, Freymark G, Miersch O, Wasternack C, Boller T, Jones JD, Romeis T (2005) Ethylenemediated cross-talk between calcium-dependent protein kinase and MAPK signaling controls stress responses in plants. Proc Natl Acad Sci 102:10736–10741. doi: 10.1073/pnas.0502954102 PubMedCentralCrossRefPubMedGoogle Scholar
  15. 15.
    Ma S, Gong Q, Bohnert HJ (2006) Dissecting salt stress pathways. J Exp Bot 57:1097–1107. doi: 10.1093/jxb/erj098 CrossRefPubMedGoogle Scholar
  16. 16.
    Galvan-Ampudia CS, Testerink C (2011) Salt stress signals shape the plant root. Can J Plant Sci 85: 815-827. Curr Opin Plant Biol 14(3):296–302. doi: 10.1016/j.pbi.2011.03.019 CrossRefPubMedGoogle Scholar
  17. 17.
    Hodge A, Berta G, Doussan C, Merchan F, Crespi M (2009) Plant root growth, architecture and function. Plant Soil 321:153–187. doi: 10.1007/s11104-009-9929-9 CrossRefGoogle Scholar
  18. 18.
    Leyser O (2006) Dynamic integration of auxin transport and signaling. Curr Biol 16:R424–R433. doi: 10.1016/j.cub.2006.05.014 CrossRefPubMedGoogle Scholar
  19. 19.
    Birnbaum K, Benfey PN (2004) Network building: transcriptional circuits in the root. Curr Opin Plant Biol 7:582–588. doi: 10.1016/j.pbi.2004.07.010 CrossRefPubMedGoogle Scholar
  20. 20.
    Tuskan GA, Difazio S, Jansson S, Bohlmann J, Grigoriev I et al (2006) The genome of black cottonwood, Populus trichocarpa (Torr. & Gray). Science 313:1596–1604. doi: 10.1126/science.1128691 CrossRefPubMedGoogle Scholar
  21. 21.
    Zhou J, Liu M, Jiang J, Qiao G, Lin S, Li H, Xie L, Zhuo R (2012) Expression profile of miRNAs in Populus cathayana L. and Salix matsudana Koidz under salt stress. Mol Biol Rep 39:8645–8654. doi: 10.1007/s11033-012-1719-4 CrossRefPubMedGoogle Scholar
  22. 22.
    Conesa A, Götz S (2008) Blast2GO: a comprehensive suite for functional analysis in plant genomics. Int J Plant Genomics 2008:619832. doi: 10.1155/2008/619832 PubMedCentralCrossRefPubMedGoogle Scholar
  23. 23.
    Kanehisa M, Goto S (2000) KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res 28:27–30. doi: 10.1093/nar/28.1.27 PubMedCentralCrossRefPubMedGoogle Scholar
  24. 24.
    Yuan H, Meng X, Gao Q, Qu W, Xu T, Xu Z, Song R (2011) The characterization of two peroxir edoxin genes in Dunaliella viridis provides insights into antioxidative response to salt stress. Plant Cell Rep 30:1503–1512. doi: 10.1007/s00299-011-1060-8 CrossRefPubMedGoogle Scholar
  25. 25.
    Rushton PJ, Somssich IE (1998) Transcriptional control of plant genes responsive to pathogens. Curr Opin Plant Biol 1:311–315. doi: 10.1016/1369-5266(88)80052-9 CrossRefPubMedGoogle Scholar
  26. 26.
    Vinocur B, Altman A (2005) Recent advances in engineering plant tolerance to abiotic stress: achievements and limitations. Curr Opin Biotechnol 16:123–132. doi: 10.1016/j.copbio.2005.02.001 CrossRefPubMedGoogle Scholar
  27. 27.
    Yamaguchi-Shinozaki K, Shinozaki K (2006) Transcriptional regulatory networks in cellular responses and tolerance to dehydration and cold stresses. Annu Rev Plant Biol 57:781–803. doi: 10.1146/annurev.arplant.57.032905.105444 CrossRefPubMedGoogle Scholar
  28. 28.
    Murata N, Suzuki I (2006) Exploitation of genomic sequences in a systematic analysis to access how cyanobacteria sense environmental stress. J Exp Bot 57:235–247. doi: 10.1093/jxb/erj005 CrossRefPubMedGoogle Scholar
  29. 29.
    Karan RL, Singla-Pareek S, Pareek A (2009) Histidine kinase and response regulator genes as they relate to salinity tolerance in rice. Funct Integr Genomics 9:411–417. doi: 10.1007/s10142-009-0119-x CrossRefPubMedGoogle Scholar
  30. 30.
    Chao DY, Luo YH, Shi M, Luo D, Lin HX (2005) Salt-responsive genes in rice revealed by cDNA microarray analysis. Cell Res 15:796–810. doi: 10.1038/ CrossRefPubMedGoogle Scholar
  31. 31.
    Richardt S, Timmerhaus G, Lang D, Qudeimat E, Corrêa LG, Reski R, Rensing SA, Frank W (2010) Microarray analysis of the moss Physcomitrella patens reveals evolutionarily conserved transcriptional regulation of salt stress and abscisic acid signalling. Plant Mol Biol 72:27–45. doi: 10.1007/s11103-009-9550-6 CrossRefPubMedGoogle Scholar
  32. 32.
    Lorenz WW, Alba R, Yu YS, Bordeaux JM, Simões M, Dean JF (2011) Microarray analysis and scale-free gene networks identify candidate regulators in drought-stressed roots of loblolly pine (P. taeda L.). BMC Genom 12:264. doi: 10.1186/1471-2164-12-264 CrossRefGoogle Scholar
  33. 33.
    Liu Y, Ji X, Zheng L, Nie X, Wang Y (2013) Microarray analysis of transcriptional responses to abscisic acid and salt stress in Arabidopsis thaliana. Int J Mol Sci 14:9979–9998. doi: 10.3390/ijms14059979 PubMedCentralCrossRefPubMedGoogle Scholar
  34. 34.
    Liu J, Yin T, Ye N, Chen Y, Yin T, Liu M, Hassani D (2013) Transcriptome analysis of the differentially expressed genes in the male and female shrub willows (Salix suchowensis). PLoS One 8:e60181. doi: 10.1371/journal.pone.0060181 PubMedCentralCrossRefPubMedGoogle Scholar
  35. 35.
    Xu X, Zhang Y, Williams J, Antoniou E, McCombie WR, Wu S, Zhu W, Davidson NO, Denoya P, Li E (2013) Parallel comparison of Illumina RNA-Seq and Affymetrix microarray platforms on transcriptomic profiles generated from 5-aza-deoxy-cytidine treated HT-29 colon cancer cells and simulated datasets. BMC Bioinformatics 14(Suppl 9):S1. doi: 10.1186/1471-2105-14-S9-S1 PubMedCentralCrossRefPubMedGoogle Scholar
  36. 36.
    Kogenaru S, Qing Y, Guo Y, Wang N (2012) RNA-seq and microarray complement each other in transcriptome profiling. BMC Genom 13:629. doi: 10.1186/1471-2164-13-629 CrossRefGoogle Scholar
  37. 37.
    Qiu Q, Ma T, Hu Q, Liu B, Wu Y, Zhou H, Wang Q, Wang J, Liu J (2011) Genome-scale transcriptome analysis of the desert poplar, Populus euphratica. Tree Physiol 31:452–461. doi: 10.1093/treephys/tpr015 CrossRefPubMedGoogle Scholar
  38. 38.
    Li Q, Liu J, Tan D, Allan AC, Jiang Y, Xu X, Han Z, Kong J (2013) A genome-wide expression profile of salt-responsive genes in the apple rootstock malus zumi. Int J Mol Sci 14:21053–21070PubMedCentralCrossRefPubMedGoogle Scholar
  39. 39.
    Chen H, Lai Z, Shi J, Xiao Y, Chen Z, Xu X (2010) Roles of Arabidopsis WRKY18, WRKY40 and WRKY60 transcription factors in plant responses to abscisic acid and abiotic stress. BMC Plant Biol 10:281. doi: 10.1186/1471-2229-10-281 PubMedCentralCrossRefPubMedGoogle Scholar
  40. 40.
    Li J, Brader G, Kariola T, Palva ET (2006) WRKY70 modulates the selection of signaling pathways in plant defense. Plant J 46:477–491. doi: 10.1111/j.1365-313X.2006.02712.x CrossRefPubMedGoogle Scholar
  41. 41.
    Journot-Catalino N, Somssich IE, Roby D, Kroj T (2006) The transcription factors WRKY11 and WRKY17 act as negative regulators of basal resistance in Arabidopsis thaliana. Plant Cell 18:3289–3302PubMedCentralCrossRefPubMedGoogle Scholar
  42. 42.
    Yao D, Zhang X, Zhao X, Liu C, Wang C, Zhang Z, Zhang C, Wei Q, Wang Q, Yan H, Li F, Su Z (2011) Transcriptome analysis reveals salt-stress-regulated biological processes and key pathways in roots of cotton (Gossypium hirsutum L.). Genomics 98:45–47. doi: 10.1016/j.ygeno.2011.04.007 CrossRefGoogle Scholar
  43. 43.
    Wang C, Deng P, Chen L, Wang X, Ma H, Hu W, Yao N, Feng Y, Chai R, Yang G, He G (2013) A wheat WRKY transcription factor TaWRKY10 confers tolerance to multiple abiotic stresses in transgenic tobacco. PLoS One 8(6):e65120. doi: 10.1371/journal.pone.0065120 PubMedCentralCrossRefPubMedGoogle Scholar
  44. 44.
    Ma HS, Liang D, Shuai P, Xia XL, Yin WL (2010) The salt- and drought-inducible poplar GRAS protein SCL7 confers salt and drought tolerance in Arabidopsis thaliana. J Exp Bot 61:4011–4019. doi: 10.1093/jxb/erq217 PubMedCentralCrossRefPubMedGoogle Scholar
  45. 45.
    Olsen AN, Ernst HA, Leggio LL, Skriver K (2005) NAC transcription factors: structurally distinct, functionally diverse. Trends Plant Sci 10:79–87. doi: 10.1016/j.tplants.2004.12.010 CrossRefPubMedGoogle Scholar
  46. 46.
    Guo HS, Xie Q, Fei JF, Chua NH (2005) MicroRNA directs mRNA cleavage of the transcription factor NAC1 to down regulate auxin signals for Arabidopsis lateral root development. Plant Cell 17:1376–1386. doi: 10.1105/tpc.105.030841 PubMedCentralCrossRefPubMedGoogle Scholar
  47. 47.
    Yang R, Deng C, Ouyang B, Ye Z (2011) Molecular analysis of two salt-responsive NAC-family genes and their expression analysis in tomato. Mol Biol Rep 38:857–863. doi: 10.1007/s11033-010-0177-0 CrossRefPubMedGoogle Scholar
  48. 48.
    Ramegowda V, Senthil-Kumar M, Nataraja KN, Reddy MK, Mysore KS, Udayakumar M (2012) Expression of a finger millet transcription factor, EcNAC1, in tobacco confers abiotic stress-tolerance. PLoS One 7:e40397. doi: 10.1371/journal.pone.0040397 PubMedCentralCrossRefPubMedGoogle Scholar
  49. 49.
    Zhong H, Guo QQ, Chen L, Ren F, Wang QQ, Zheng Y, Li XB (2012) Two Brassica napus genes encoding NAC transcription factors are involved in response to high-salinity stress. Plant Cell Rep 31:1991–2003. doi: 10.1007/s00299-012-1311-3 CrossRefPubMedGoogle Scholar
  50. 50.
    He XJ, Mu RL, Cao WH, Zhang ZG, Zhang JS, Chen SY (2005) AtNAC2, a transcription factor downstream of ethylene and auxin signaling pathways, is involved in salt stress response and lateral root development. Plant J 44:903–916. doi: 10.1111/j.1365-313X.2005.02575.x CrossRefPubMedGoogle Scholar
  51. 51.
    Han Q, Zhang J, Li H, Luo Z, Ziaf K, Ouyang B, Wang T, Ye Z (2012) Identification and expression pattern of one stress-responsive NAC gene from Solanum lycopersicum. Mol Biol Rep 39:1713–1720. doi: 10.1007/s11033-011-0911-2 CrossRefPubMedGoogle Scholar
  52. 52.
    Singh K, Foley RC, Oñate-Sánchez L (2002) Transcription factors in plant defense and stress responses. Curr Opin Plant Biol 5:430–436. doi: 10.1016/S1369-5266(02)00289-3 CrossRefPubMedGoogle Scholar
  53. 53.
    Chen T, Yang Q, Gruber M, Kang J, Sun Y, Ding W, Zhang T, Zhang X (2012) Expression of an alfalfa (Medicago sativa L.) ethylene response factor gene MsERF8 in tobacco plants enhances resistance to salinity. Mol Biol Rep 39:6067–6075. doi: 10.1007/s11033-011-1421-y CrossRefPubMedGoogle Scholar
  54. 54.
    Zhai Y, Wang Y, Li Y, Lei T, Yan F, Su L, Li X, Zhao Y, Sun X, Li J, Wang Q (2013) Isolation and molecular characterization of GmERF7, a soybean ethylene-response factor that increases salt stress tolerance in tobacco. Gene 513:174–183. doi: 10.1016/j.gene.2012.10.018 CrossRefPubMedGoogle Scholar
  55. 55.
    Ma Y, Szostkiewicz I, Korte A, Moes D, Yang Y, Christmann A, Grill E (2009) Regulators of PP2C phosphatase activity function as abscisic acid sensors. Science 324:1064–1068. doi: 10.1126/science.1172408 PubMedGoogle Scholar
  56. 56.
    Zhang Z, Barlow JN, Baldwin JE, Schofield CJ (1997) Metal-catalyzed oxidation and mutagenesis studies on the iron (II) binding site of 1-aminocyclopropane-1-carboxylate oxidase. Biochemistry 36:15999–16007. doi: 10.1021/bi971823c CrossRefPubMedGoogle Scholar
  57. 57.
    Wang G, Pichersky E (2007) Nicotinamidase participates in the salvage pathway of NAD biosynthesis in Arabidopsis. Plant J 49:1020–1029. doi: 10.1111/j.1365-313X.2006.03013.x CrossRefPubMedGoogle Scholar
  58. 58.
    Chong ZZ, Kang JQ, Maiese K (2004) AKT1 drives endothelial cell membrane asymmetry and microglial activation through Bcl-xL and caspases 1, 3 and 9. Exp Cell Res 296:196–207. doi: 10.1016/j.yexcr.2004.01.02 CrossRefPubMedGoogle Scholar
  59. 59.
    Chen JH, Jiang HW, Hsieh EJ, Chen HY, Chien CT, Hsieh HL, Lin TP (2012) Drought and salt stress tolerance of an Arabidopsis glutathione S-transferase U17 knockout mutant are attributed to the combined effect of glutathione and abscisic acid. Plant Physiol 158(1):340–351. doi: 10.1104/pp.111.181875 PubMedCentralCrossRefPubMedGoogle Scholar
  60. 60.
    Li G, Peng X, Wei L, Kang G (2013) Salicylic acid increases the contents of glutathione and ascorbate and temporally regulates the related gene expression in salt-stressed wheat seedlings. Gene 529(2):321–325. doi: 10.1016/j.gene.2013.07.093 CrossRefPubMedGoogle Scholar
  61. 61.
    Roxas VP, Lodhi SA, Garrett DK, Mahan JR, Allen RD (2000) Stress tolerance in transgenic tobacco seedlings that overexpress glutathione S-transferase/glutathione peroxidase. Plant Cell Physiol 41:1229–1234. doi: 10.1093/pcp/pcd051 CrossRefPubMedGoogle Scholar
  62. 62.
    Edwards R, Dixon DP (2005) Plant glutathione transferases. Methods Enzymol 401:169–186. doi: 10.1139/B07-033 CrossRefPubMedGoogle Scholar
  63. 63.
    Hincha DK, Hagemann M (2004) Stabilization of model membranes during drying by compatible solutes involved in the stress tolerance of plants and microorganisms. Biochem J 383:277–283. doi: 10.1042/BJ20040746 PubMedCentralCrossRefPubMedGoogle Scholar
  64. 64.
    Toldi O, Tuba Z, Scott P (2009) Vegetative desiccation tolerance: is it a goldmine for bioengineering crops? Plant Sci 176:187–199. doi: 10.1016/j.plantsci.2008.10.002 CrossRefGoogle Scholar
  65. 65.
    Sun Z, Qi X, Wang Z, Li P, Wu C, Zhang H, Zhao Y (2013) Overexpression of TsGOLS2, a galactinol synthase, in Arabidopsis thaliana enhances tolerance to high salinity and osmotic stresses. Plant Physiol Biochem 69:82–89. doi: 10.1016/j.plaphy.2013.04.009 CrossRefPubMedGoogle Scholar
  66. 66.
    Wang HX, Ng TB (2006) Concurrent isolation of a Kunitz-type trypsin inhibitor with antifungal activity and a novel lectin from Pseudostellaria heterophylla roots. Biochem Biophys Res Commun 342:349–353. doi: 10.1016/j.bbrc.2006.01.109 CrossRefPubMedGoogle Scholar
  67. 67.
    Park Y, Choi BH, Kwak JS, Kang CW, Lim HT, Cheong HS, Hahm KS (2005) Kunitz-type serine protease inhibitor from potato (Solanum tuberosum L. cv. Jopung). J Agric Food Chem 53:6491–6496. doi: 10.1021/jf0505123 CrossRefPubMedGoogle Scholar
  68. 68.
    Ledoigt G, Griffaut B, Debiton E, Vian C, Mustel A, Evray G, Maurizis JC, Madelmont JC (2006) Analysis of secreted protease inhibitors after water stress in potato tubers. Int J Biol Macromol 38:268–271. doi: 10.1016/j.ijbiomac.2006.03.016 CrossRefPubMedGoogle Scholar
  69. 69.
    Jiang Y, Deyholos MK (2006) Comprehensive transcriptional profiling of NaCl-stressed Arabidopsis roots reveals novel classes of responsive genes. BMC Plant Biol 6:25. doi: 10.1186/1471-2229-6-25 PubMedCentralCrossRefPubMedGoogle Scholar
  70. 70.
    Sahi C, Singh A, Blumwald E, Grover A (2006) Beyond osmolytes and transporters: novel plant salt-stress tolerance-related genes from transcriptional profiling data. Physiol Plantarum 127:1–9. doi: 10.1111/j.1399-3054.2005.00610.x CrossRefGoogle Scholar
  71. 71.
    Nakashima K, Ito Y, Yamaguchi-Shinozaki K (2009) Transcriptional regulatory networks in response to abiotic stresses in Arabidopsis and grasses. Plant Physiol 149:88–95. doi: 10.1104/pp.108.129791 PubMedCentralCrossRefPubMedGoogle Scholar
  72. 72.
    Zhang X, Zhen JB, Li Z, Kang D, Yang Y, Kong J, Hua JP (2011) Expression profile of early responsive genes under salt stress in upland cotton (Gossypium hirsutum L.). Plant Mol Biol Rep 29:626–637. doi: 10.1007/s11105-010-0269-y CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Mingying Liu
    • 1
    • 2
  • Guirong Qiao
    • 1
    • 2
  • Jing Jiang
    • 1
    • 2
  • Xiaojiao Han
    • 1
    • 2
  • Jian Sang
    • 1
    • 2
  • Renying Zhuo
    • 1
    • 2
  1. 1.State Key Laboratory of Tree Genetics and BreedingChinese Academy of ForestryBeijingChina
  2. 2.The Research Institute of Subtropical ForestryChinese Academy of ForestryHangzhouChina

Personalised recommendations