Advertisement

Molecular Biology Reports

, Volume 41, Issue 9, pp 6263–6273 | Cite as

RETRACTED ARTICLE: Relationships between PON1 Q192R polymorphism and clinical outcome of antiplatelet treatment after percutaneous coronary intervention: a meta-analysis

  • Ping Li
  • Shu-Hong Bu
  • Xiao-Tong Lu
  • Li-Xia Li
  • A-Jing Xu
  • Yue-Nian Tang
  • Jian Zhang
Article

Abstract

This meta-analysis was performed to assess the relationships between the PON1 Q192R (rs662 T>C) polymorphism and the clinical outcome of antiplatelet treatment after percutaneous coronary intervention (PCI). A range of electronic databases were searched: Web of Science (1945–2013), the Cochrane Library Database (Issue 12, 2013), PubMed (1966–2013), EMBASE (1980–2013), CINAHL (1982–2013) and the Chinese Biomedical Database (CBM) (1982–2013) without language restrictions. Meta-analysis was conducted using the STATA 12.0 software. The crude odds ratio (OR) with their 95 % confidence interval (CI) were calculated. Six clinical cohort studies with a total number of 5,189 patients undergoing PCI for coronary heart disease were included. Our meta-analysis revealed that the PON1 Q192R polymorphism was correlated with an increased risk of major adverse cardiovascular events (MACE) in patients receiving antiplatelet treatment after PCI (C allele vs. T allele: OR = 1.22, 95 % CI 1.04–1.43, P = 0.014; CT+CC vs. TT: OR = 1.38, 95 % CI 1.03–1.86, P = 0.029; CC vs. TT: OR = 1.45, 95 % CI 1.05–1.99, P = 0.024; respectively), especially among Asians. Furthermore, we found significantly positive correlations between the PON1 Q192R polymorphism and the incidence of stent thrombosis in patients receiving antiplatelet treatment after PCI (C allele vs. T allele: OR = 1.42, 95 % CI 1.08–1.87, P = 0.011; CT+CC vs. TT: OR = 1.93, 95 % CI 1.01–3.67, P = 0.046; CC vs. TT: OR = 2.18, 95 % CI 1.09–4.35, P = 0.027; respectively). Our meta-analysis of clinical cohort studies provides evidence that the PON1 Q192R polymorphism may increase the risk of MACE and stent thrombosis in patients receiving antiplatelet treatment after PCI.

Keywords

PON1 Antiplatelet treatment Percutaneous coronary intervention Meta-analysis 

Notes

Acknowledgments

We would like to acknowledge the reviewers for their helpful comments on this paper. This work was supported by Natural Science Foundation of China (NSFC) (grant #81202598), Shanghai Municipal Public Health Bureau (grant #2009068).

Conflict of interest

The authors declare no conflict of interest.

References

  1. 1.
    Caggegi A, Capodanno D, Capranzano P, Chisari A, Ministeri M, Mangiameli A, Ronsivalle G, Ricca G et al (2011) Comparison of one-year outcomes of percutaneous coronary intervention versus coronary artery bypass grafting in patients with unprotected left main coronary artery disease and acute coronary syndromes (from the customize registry). Am J Cardiol 108:355–359. doi: 10.1016/j.amjcard.2011.03.050 CrossRefPubMedGoogle Scholar
  2. 2.
    Mause SF, Ritzel E, Liehn EA, Hristov M, Bidzhekov K, Muller-Newen G, Soehnlein O, Weber C (2010) Platelet microparticles enhance the vasoregenerative potential of angiogenic early outgrowth cells after vascular injury. Circulation 122:495–506. doi: 10.1161/CIRCULATIONAHA.109.909473 CrossRefPubMedGoogle Scholar
  3. 3.
    Lhermusier T, Van Rothem J, Garcia C, Gratacap MP, Payrastre B (2011) Targeted drug therapy: the platelet side. Platelets 22:479–484. doi: 10.3109/09537104.2011.567423 CrossRefPubMedGoogle Scholar
  4. 4.
    Chhatriwalla AK, Bhatt DL (2008) Should dual antiplatelet therapy after drug-eluting stents be continued for more than one-year? Dual antiplatelet therapy after drug-eluting stents should be continued for more than one-year and preferably indefinitely. Circ Cardiovasc Interv 1:217–225. doi: 10.1161/CIRCINTERVENTIONS.108.811380 CrossRefPubMedGoogle Scholar
  5. 5.
    Tousoulis D, Paroutoglou IP, Papageorgiou N, Charakida M, Stefanadis C (2010) Recent therapeutic approaches to platelet activation in coronary artery disease. Pharmacol Ther 127:108–120. doi: 10.1016/j.pharmthera.2010.05.001 CrossRefPubMedGoogle Scholar
  6. 6.
    Park KW, Park JJ, Kang J, Jeon KH, Kang SH, Han JK, Lee SE, Yang HM et al (2013) Paraoxonase 1 gene polymorphism does not affect clopidogrel response variability but is associated with clinical outcome after PCI. PLoS One 8:e52779. doi: 10.1371/journal.pone.0052779 PubMedCentralCrossRefPubMedGoogle Scholar
  7. 7.
    Trenk D, Hochholzer W, Fromm MF, Zolk O, Valina CM, Stratz C, Neumann FJ (2011) Paraoxonase-1 Q192R polymorphism and antiplatelet effects of clopidogrel in patients undergoing elective coronary stent placement. Circ Cardiovasc Genet 4:429–436. doi: 10.1161/CIRCGENETICS.111.960112 CrossRefPubMedGoogle Scholar
  8. 8.
    Li WF, Costa LG, Richter RJ, Hagen T, Shih DM, Tward A, Lusis AJ, Furlong CE (2000) Catalytic efficiency determines the in vivo efficacy of pon1 for detoxifying organophosphorus compounds. Pharmacogenetics 10:767–779CrossRefPubMedGoogle Scholar
  9. 9.
    Hulot JS, Collet JP, Cayla G, Silvain J, Allanic F, Bellemain-Appaix A, Scott SA, Montalescot G (2011) CYP2C19 but not PON1 genetic variants influence clopidogrel pharmacokinetics, pharmacodynamics, and clinical efficacy in post-myocardial infarction patients. Circ Cardiovasc Interv 4:422–428. doi: 10.1161/CIRCINTERVENTIONS.111.963025 CrossRefPubMedGoogle Scholar
  10. 10.
    Wang X, Fan Z, Huang J, Su S, Yu Q, Zhao J, Hui R, Yao Z et al (2003) Extensive association analysis between polymorphisms of PON gene cluster with coronary heart disease in Chinese Han population. Arterioscler Thromb Vasc Biol 23:328–334. doi: 10.1161/01.ATV.0000051702.38086.C1 CrossRefPubMedGoogle Scholar
  11. 11.
    Bouman HJ, Schomig E, van Werkum JW, Velder J, Hackeng CM, Hirschhauser C, Waldmann C, Schmalz HG et al (2011) Paraoxonase-1 is a major determinant of clopidogrel efficacy. Nat Med 17:110–116. doi: 10.1038/nm.2281 CrossRefPubMedGoogle Scholar
  12. 12.
    Lewis JP, Fisch AS, Ryan K, O’Connell JR, Gibson Q, Mitchell BD, Shen H, Tanner K et al (2011) Paraoxonase 1 (PON1) gene variants are not associated with clopidogrel response. Clin Pharmacol Ther 90:568–574. doi: 10.1038/clpt.2011.194 PubMedCentralCrossRefPubMedGoogle Scholar
  13. 13.
    Plosker GL, Lyseng-Williamson KA (2007) Clopidogrel: a review of its use in the prevention of thrombosis. Drugs 67:613–646CrossRefPubMedGoogle Scholar
  14. 14.
    Pereillo JM, Maftouh M, Andrieu A, Uzabiaga MF, Fedeli O, Savi P, Pascal M, Herbert JM et al (2002) Structure and stereochemistry of the active metabolite of clopidogrel. Drug Metab Dispos 30:1288–1295. doi: 10.1124/dmd.30.11.1288 CrossRefPubMedGoogle Scholar
  15. 15.
    Camps J, Joven J, Mackness B, Mackness M, Tawfik D, Draganov D, Costa LG, Paragh G et al (2011) Paraoxonase-1 and clopidogrel efficacy. Nat Med 17:1041–1042. doi: 10.1038/nm.2386 CrossRefPubMedGoogle Scholar
  16. 16.
    Price MJ, Murray SS, Angiolillo DJ, Lillie E, Smith EN, Tisch RL, Schork NJ, Teirstein PS et al (2012) Influence of genetic polymorphisms on the effect of high- and standard-dose clopidogrel after percutaneous coronary intervention: the gift (genotype information and functional testing) study. J Am Coll Cardiol 59:1928–1937. doi: 10.1016/j.jacc.2011.11.068 CrossRefPubMedGoogle Scholar
  17. 17.
    Chen DY, Wang CY, Wen MS, Lee TH, Chu Y, Hsieh MJ, Chang SH, Lee CH et al (2012) Paraoxonase-1 is not a major determinant of stent thrombosis in a taiwanese population. PLoS One 7:e39178. doi: 10.1371/journal.pone.0039178 PubMedCentralCrossRefPubMedGoogle Scholar
  18. 18.
    Stang A (2010) Critical evaluation of the Newcastle–Ottawa Scale for the assessment of the quality of nonrandomized studies in meta-analyses. Eur J Epidemiol 25:603–605. doi: 10.1007/s10654-010-9491-z CrossRefPubMedGoogle Scholar
  19. 19.
    Zintzaras E, Ioannidis JP (2005) Hegesma: genome search meta-analysis and heterogeneity testing. Bioinformatics 21:3672–3673. doi: 10.1093/bioinformatics/bti536 CrossRefPubMedGoogle Scholar
  20. 20.
    Peters JL, Sutton AJ, Jones DR, Abrams KR, Rushton L (2006) Comparison of two methods to detect publication bias in meta-analysis. JAMA 295:676–680. doi: 10.1001/jama.295.6.676 CrossRefPubMedGoogle Scholar
  21. 21.
    Campo G, Ferraresi P, Marchesini J, Bernardi F, Valgimigli M (2011) Relationship between paraoxonase q192r gene polymorphism and on-clopidogrel platelet reactivity over time in patients treated with percutaneous coronary intervention. J Thromb Haemost 9:2106–2108. doi: 10.1111/j.1538-7836.2011.04457.x CrossRefPubMedGoogle Scholar
  22. 22.
    Sibbing D, Koch W, Massberg S, Byrne RA, Mehilli J, Schulz S, Mayer K, Bernlochner I et al (2011) No association of paraoxonase-1 Q192R genotypes with platelet response to clopidogrel and risk of stent thrombosis after coronary stenting. Eur Heart J 32:1605–1613. doi: 10.1093/eurheartj/ehr155 CrossRefPubMedGoogle Scholar
  23. 23.
    Tang XF, Wang J, Zhang JH, Meng XM, Xu B, Qiao SB, Wu YJ, Chen J et al (2013) Effect of the CYP2C19 2 and 3 genotypes, abcb1 C3435T and pon1 Q192R alleles on the pharmacodynamics and adverse clinical events of clopidogrel in Chinese people after percutaneous coronary intervention. Eur J Clin Pharmacol 69:1103–1112. doi: 10.1007/s00228-012-1446-8 CrossRefPubMedGoogle Scholar
  24. 24.
    Verschuren JJ, Boden H, Wessels JA, van der Hoeven BL, Trompet S, Heijmans BT, Putter H, Guchelaar HJ et al (2013) Value of platelet pharmacogenetics in common clinical practice of patients with st-segment elevation myocardial infarction. Int J Cardiol 167:2882–2888. doi: 10.1016/j.ijcard.2012.07.020 CrossRefPubMedGoogle Scholar
  25. 25.
    Getz GS, Reardon CA (2004) Paraoxonase, a cardioprotective enzyme: continuing issues. Curr Opin Lipidol 15:261–267CrossRefPubMedGoogle Scholar
  26. 26.
    Costa LG, Cole TB, Vitalone A, Furlong CE (2005) Measurement of paraoxonase (PON1) status as a potential biomarker of susceptibility to organophosphate toxicity. Clin Chim Acta 352:37–47. doi: 10.1016/j.cccn.2004.09.019 CrossRefPubMedGoogle Scholar
  27. 27.
    Simon T, Steg PG, Becquemont L, Verstuyft C, Kotti S, Schiele F, Ferrari E, Drouet E et al (2011) Effect of paraoxonase-1 polymorphism on clinical outcomes in patients treated with clopidogrel after an acute myocardial infarction. Clin Pharmacol Ther 90:561–567. doi: 10.1038/clpt.2011.193 CrossRefPubMedGoogle Scholar
  28. 28.
    Steinhubl SR, Berger PB, Mann JT III, Fry ET, DeLago A, Wilmer C, Topol EJ (2002) Early and sustained dual oral antiplatelet therapy following percutaneous coronary intervention: a randomized controlled trial. JAMA 288:2411–2420. doi: 10.1001/jama.288.19.2411 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Ping Li
    • 1
  • Shu-Hong Bu
    • 1
  • Xiao-Tong Lu
    • 1
  • Li-Xia Li
    • 1
  • A-Jing Xu
    • 1
  • Yue-Nian Tang
    • 1
  • Jian Zhang
    • 1
  1. 1.Department of PharmacyThe Affiliated Xinhua Hospital of Shanghai Jiaotong UniversityShanghaiPeople’s Republic China

Personalised recommendations