Advertisement

Molecular Biology Reports

, Volume 41, Issue 9, pp 6105–6110 | Cite as

Lower carrier rate of GJB2 W24X ancestral Indian mutation in Roma samples from Hungary: implication for public health intervention

  • Csilla Sipeky
  • Petra Matyas
  • Marton Melegh
  • Ingrid Janicsek
  • Renata Szalai
  • Istvan Szabo
  • Reka Varnai
  • Greta Tarlos
  • Alma Ganczer
  • Bela Melegh
Article

Abstract

The purpose of this work was to characterise the W24X mutation of the GJB2 gene in order to provide more representative and geographicaly relevant carrier rates of healthy Roma subisolates and the Hungarian population. 493 Roma and 498 Hungarian healthy subjects were genotyped for the GJB2 c.71G>A (rs104894396, W24X) mutation by PCR–RFLP assay and direct sequencing. This is the first report on GJB2 W24X mutation in geographically subisolated Roma population of Hungary compared to local Hungarians. Comparing the genotype and allele frequencies of GJB2 rs104894396 mutation, significant difference was found in GG (98.4 vs. 99.8 %), GA (1.62 vs. 0.20 %) genotypes and A (0.8 vs. 0.1 %) allele between the Roma and Hungarian populations, respectively (p < 0.02). None of the subjects of Roma and Hungarian samples carried the GJB2 W24X AA genotype. Considerable result of our study, that the proportion of GJB2 W24X GA heterozygotes and the A allele frequency was eight times higher in Roma than in Hungarians. Considering the results, the mutant allele frequency both in Roma (0.8 %) and in Hungarian (0.1 %) populations is lower than expected from previous results, likely reflecting local differentiated subisolates of these populations and a suspected lower risk for GJB2 mutation related deafness. However, the significant difference in GJB2 W24X carrier rates between the Roma and Hungarians may initiate individual diagnostic investigations and effective public health interventions.

Keywords

GJB2 c.71G>A (rs104894396W24X) Roma Hungarian Interethnic differences 

Notes

Acknowledgments

This work was supported by the Hungarian National Science Foundation Grant (OTKA K 103983), the SROP-4.2.2/08/1/2008-0011 Science, Please! Research Team on Innovation, the SROP-4.2.1.B-10/2/KONV-2010-0002, Developing the South Transdanubian Regional University Competitiveness and the János Szentágothai Research Centre (Ifjusag str. 20, 7624-Pecs).

References

  1. 1.
    Kikuchi T, Kimura RS, Paul DL, Takasaka T, Adams JC (2000) Gap junction systems in the mammalian cochlea. Brain Res Brain Res Rev 32(1):163–166CrossRefPubMedGoogle Scholar
  2. 2.
    Apps SA, Rankin WA, Kurmis AP (2007) Connexin 26 mutations in autosomal recessive deafness disorders: a review. Int J Audiol 46(2):75–81. doi: 10.1080/14992020600582190 CrossRefPubMedGoogle Scholar
  3. 3.
    Zelante L, Gasparini P, Estivill X, Melchionda S, D’Agruma L, Govea N, Mila M, Monica MD, Lutfi J, Shohat M, Mansfield E, Delgrosso K, Rappaport E, Surrey S, Fortina P (1997) Connexin26 mutations associated with the most common form of non-syndromic neurosensory autosomal recessive deafness (DFNB1) in Mediterraneans. Hum Mol Genet 6(9):1605–1609CrossRefPubMedGoogle Scholar
  4. 4.
    Rabionet R, Gasparini P, Estivill X (2000) Molecular genetics of hearing impairment due to mutations in gap junction genes encoding beta connexins. Hum Mutat 16(3):190–202. doi: 10.1002/1098-1004(200009)16:3<190:AID-HUMU2>3.0.CO;2-I CrossRefPubMedGoogle Scholar
  5. 5.
    Padma G, Ramchander PV, Nandur UV, Padma T (2009) GJB2 and GJB6 gene mutations found in Indian probands with congenital hearing impairment. J Genet 88(3):267–272CrossRefPubMedGoogle Scholar
  6. 6.
    Lee JR, White TW (2009) Connexin-26 mutations in deafness and skin disease. Expert Rev Mol Med 11:e35. doi: 10.1017/S1462399409001276 CrossRefPubMedGoogle Scholar
  7. 7.
    Duman D, Tekin M (2012) Autosomal recessive nonsyndromic deafness genes: a review. Front Biosci 17:2213–2236CrossRefGoogle Scholar
  8. 8.
    Kelsell DP, Dunlop J, Stevens HP, Lench NJ, Liang JN, Parry G, Mueller RF, Leigh IM (1997) Connexin 26 mutations in hereditary non-syndromic sensorineural deafness. Nature 387(6628):80–83. doi: 10.1038/387080a0 CrossRefPubMedGoogle Scholar
  9. 9.
    Estivill X, Fortina P, Surrey S, Rabionet R, Melchionda S, D′Agruma L, Mansfield E, Rappaport E, Govea N, Mila M, Zelante L, Gasparini P (1998) Connexin-26 mutations in sporadic and inherited sensorineural deafness. Lancet 351(9100):394–398. doi: 10.1016/S0140-6736(97)11124-2 CrossRefPubMedGoogle Scholar
  10. 10.
    Maheshwari M, Vijaya R, Ghosh M, Shastri S, Kabra M, Menon PS (2003) Screening of families with autosomal recessive non-syndromic hearing impairment (ARNSHI) for mutations in GJB2 gene: Indian scenario. Am J Med Genet A 120A(2):180–184. doi: 10.1002/ajmg.a.20014 CrossRefPubMedGoogle Scholar
  11. 11.
    Joseph AY, Rasool TJ (2009) High frequency of connexin26 (GJB2) mutations associated with nonsyndromic hearing loss in the population of Kerala. India Int J Pediatr Otorhinolaryngol 73(3):437–443. doi: 10.1016/j.ijporl.2008.11.010 CrossRefPubMedGoogle Scholar
  12. 12.
    Bouwer S, Angelicheva D, Chandler D, Seeman P, Tournev I, Kalaydjieva L (2007) Carrier rates of the ancestral Indian W24X mutation in GJB2 in the general Gypsy population and individual subisolates. Genet Test 11(4):455–458. doi: 10.1089/gte.2007.0048 CrossRefPubMedGoogle Scholar
  13. 13.
    Bors A, Andrikovics H, Kalmar L, Erdei N, Galambos S, Losonczi A, Furedi S, Balogh I, Szalai C, Tordai A (2004) Frequencies of two common mutations (c.35delG and c.167delT) of the connexin 26 gene in different populations of Hungary. Int J Mol Med 14(6):1105–1108PubMedGoogle Scholar
  14. 14.
    Minarik G, Ferak V, Ferakova E, Ficek A, Polakova H, Kadasi L (2003) High frequency of GJB2 mutation W24X among Slovak Romany (Gypsy) patients with non-syndromic hearing loss (NSHL). Gen Physiol Biophys 22(4):549–556PubMedGoogle Scholar
  15. 15.
    Sipeky C, Csongei V, Jaromi L, Safrany E, Maasz A, Takacs I, Beres J, Fodor L, Szabo M, Melegh B (2011) Genetic variability and haplotype profile of MDR1 (ABCB1) in Roma and Hungarian population samples with a review of the literature. Drug Metab Pharmacokinet 26(2):206–215CrossRefPubMedGoogle Scholar
  16. 16.
    Sipeky C, Csongei V, Jaromi L, Safrany E, Polgar N, Lakner L, Szabo M, Takacs I, Melegh B (2009) Vitamin K epoxide reductase complex 1 (VKORC1) haplotypes in healthy Hungarian and Roma population samples. Pharmacogenomics 10(6):1025–1032. doi: 10.2217/pgs.09.46 CrossRefPubMedGoogle Scholar
  17. 17.
    Sipeky C, Lakner L, Szabo M, Takacs I, Tamasi V, Polgar N, Falus A, Melegh B (2009) Interethnic differences of CYP2C9 alleles in healthy Hungarian and Roma population samples: relationship to worldwide allelic frequencies. Blood Cells Mol Dis 43(3):239–242. doi: 10.1016/j.bcmd.2009.05.005 CrossRefPubMedGoogle Scholar
  18. 18.
    Mukherjea D, Rybak LP (2011) Pharmacogenomics of cisplatin-induced ototoxicity. Pharmacogenomics 12(7):1039–1050. doi: 10.2217/pgs.11.48 PubMedCentralCrossRefPubMedGoogle Scholar
  19. 19.
    Knoll C, Smith RJ, Shores C, Blatt J (2006) Hearing genes and cisplatin deafness: a pilot study. Laryngoscope 116(1):72–74. doi: 10.1097/01.mlg.0000185596.20207.d2 CrossRefPubMedGoogle Scholar
  20. 20.
    Snoeckx RL, Huygen PL, Feldmann D, Marlin S, Denoyelle F, Waligora J, Mueller-Malesinska M, Pollak A, Ploski R, Murgia A, Orzan E, Castorina P, Ambrosetti U, Nowakowska-Szyrwinska E, Bal J, Wiszniewski W, Janecke AR, Nekahm-Heis D, Seeman P, Bendova O, Kenna MA, Frangulov A, Rehm HL, Tekin M, Incesulu A, Dahl HH, du Sart D, Jenkins L, Lucas D, Bitner-Glindzicz M, Avraham KB, Brownstein Z, del Castillo I, Moreno F, Blin N, Pfister M, Sziklai I, Toth T, Kelley PM, Cohn ES, Van Maldergem L, Hilbert P, Roux AF, Mondain M, Hoefsloot LH, Cremers CW, Lopponen T, Lopponen H, Parving A, Gronskov K, Schrijver I, Roberson J, Gualandi F, Martini A, Lina-Granade G, Pallares-Ruiz N, Correia C, Fialho G, Cryns K, Hilgert N, Van de Heyning P, Nishimura CJ, Smith RJ, Van Camp G (2005) GJB2 mutations and degree of hearing loss: a multicenter study. Am J Hum Genet 77(6):945–957. doi: 10.1086/497996 PubMedCentralCrossRefPubMedGoogle Scholar
  21. 21.
    Nance WE (2003) The genetics of deafness. Ment Retard Dev Disabil Res Rev 9(2):109–119. doi: 10.1002/mrdd.10067 CrossRefPubMedGoogle Scholar
  22. 22.
    Morell RJ, Kim HJ, Hood LJ, Goforth L, Friderici K, Fisher R, Van Camp G, Berlin CI, Oddoux C, Ostrer H, Keats B, Friedman TB (1998) Mutations in the connexin 26 gene (GJB2) among Ashkenazi Jews with nonsyndromic recessive deafness. N Engl J Med 339(21):1500–1505. doi: 10.1056/NEJM199811193392103 CrossRefPubMedGoogle Scholar
  23. 23.
    Lerer I, Sagi M, Malamud E, Levi H, Raas-Rothschild A, Abeliovich D (2000) Contribution of connexin 26 mutations to nonsyndromic deafness in Ashkenazi patients and the variable phenotypic effect of the mutation 167delT. Am J Med Genet 95(1):53–56CrossRefPubMedGoogle Scholar
  24. 24.
    Sobe T, Vreugde S, Shahin H, Berlin M, Davis N, Kanaan M, Yaron Y, Orr-Urtreger A, Frydman M, Shohat M, Avraham KB (2000) The prevalence and expression of inherited connexin 26 mutations associated with nonsyndromic hearing loss in the Israeli population. Hum Genet 106(1):50–57CrossRefPubMedGoogle Scholar
  25. 25.
    Sobe T, Erlich P, Berry A, Korostichevsky M, Vreugde S, Avraham KB, Bonne-Tamir B, Shohat M (1999) High frequency of the deafness-associated 167delT mutation in the connexin 26 (GJB2) gene in Israeli Ashkenazim. Am J Med Genet 86(5):499–500CrossRefPubMedGoogle Scholar
  26. 26.
    Brobby GW, Muller-Myhsok B, Horstmann RD (1998) Connexin 26 R143W mutation associated with recessive nonsyndromic sensorineural deafness in Africa. N Engl J Med 338(8):548–550. doi: 10.1056/NEJM199802193380813 CrossRefPubMedGoogle Scholar
  27. 27.
    Hamelmann C, Amedofu GK, Albrecht K, Muntau B, Gelhaus A, Brobby GW, Horstmann RD (2001) Pattern of connexin 26 (GJB2) mutations causing sensorineural hearing impairment in Ghana. Hum Mutat 18(1):84–85. doi: 10.1002/humu.1156 CrossRefPubMedGoogle Scholar
  28. 28.
    Wang YC, Kung CY, Su MC, Su CC, Hsu HM, Tsai CC, Lin CC, Li SY (2002) Mutations of Cx26 gene (GJB2) for prelingual deafness in Taiwan. Eur J Hum Genet 10(8):495–498. doi: 10.1038/sj.ejhg.5200838 CrossRefPubMedGoogle Scholar
  29. 29.
    Hwa HL, Ko TM, Hsu CJ, Huang CH, Chiang YL, Oong JL, Chen CC, Hsu CK (2003) Mutation spectrum of the connexin 26 (GJB2) gene in Taiwanese patients with prelingual deafness. Genet Med 5(3):161–165. doi: 10.1097/01.GIM.0000066796.11916.94 CrossRefPubMedGoogle Scholar
  30. 30.
    Liu XZ, Xia XJ, Ke XM, Ouyang XM, Du LL, Liu YH, Angeli S, Telischi FF, Nance WE, Balkany T, Xu LR (2002) The prevalence of connexin 26 (GJB2) mutations in the Chinese population. Hum Genet 111(4–5):394–397. doi: 10.1007/s00439-002-0811-6 CrossRefPubMedGoogle Scholar
  31. 31.
    Abe S, Usami S, Shinkawa H, Kelley PM, Kimberling WJ (2000) Prevalent connexin 26 gene (GJB2) mutations in Japanese. J Med Genet 37(1):41–43PubMedCentralCrossRefPubMedGoogle Scholar
  32. 32.
    Kudo T, Ikeda K, Kure S, Matsubara Y, Oshima T, Watanabe K, Kawase T, Narisawa K, Takasaka T (2000) Novel mutations in the connexin 26 gene (GJB2) responsible for childhood deafness in the Japanese population. Am J Med Genet 90(2):141–145CrossRefPubMedGoogle Scholar
  33. 33.
    Ohtsuka A, Yuge I, Kimura S, Namba A, Abe S, Van Laer L, Van Camp G, Usami S (2003) GJB2 deafness gene shows a specific spectrum of mutations in Japan, including a frequent founder mutation. Hum Genet 112(4):329–333. doi: 10.1007/s00439-002-0889-x PubMedGoogle Scholar
  34. 34.
    Roux AF, Pallares-Ruiz N, Vielle A, Faugere V, Templin C, Leprevost D, Artieres F, Lina G, Molinari N, Blanchet P, Mondain M, Claustres M (2004) Molecular epidemiology of DFNB1 deafness in France. BMC Med Genet 5:5. doi: 10.1186/1471-2350-5-5 PubMedCentralCrossRefPubMedGoogle Scholar
  35. 35.
    RamShankar M, Girirajan S, Dagan O, Ravi Shankar HM, Jalvi R, Rangasayee R, Avraham KB, Anand A (2003) Contribution of connexin26 (GJB2) mutations and founder effect to non-syndromic hearing loss in India. J Med Genet 40(5):e68PubMedCentralCrossRefPubMedGoogle Scholar
  36. 36.
    Pampanos A, Economides J, Iliadou V, Neou P, Leotsakos P, Voyiatzis N, Eleftheriades N, Tsakanikos M, Antoniadi T, Hatzaki A, Konstantopoulou I, Yannoukakos D, Gronskov K, Brondum-Nielsen K, Grigoriadou M, Gyftodimou J, Iliades T, Skevas A, Petersen MB (2002) Prevalence of GJB2 mutations in prelingual deafness in the Greek population. Int J Pediatr Otorhinolaryngol 65(2):101–108CrossRefPubMedGoogle Scholar
  37. 37.
    Bhalla S, Sharma R, Khandelwal G, Panda NK, Khullar M (2009) Low incidence of GJB2, GJB6 and mitochondrial DNA mutations in North Indian patients with non-syndromic hearing impairment. Biochem Biophys Res Commun 385(3):445–448. doi: 10.1016/j.bbrc.2009.05.083 CrossRefPubMedGoogle Scholar
  38. 38.
    Cordeiro-Silva Mde F, Barbosa A, Santiago M, Provetti M, Dettogni RS, Tovar TT, Rabbi-Bortolini E, Louro ID (2011) Mutation analysis of GJB2 and GJB6 genes in Southeastern Brazilians with hereditary nonsyndromic deafness. Mol Biol Rep 38(2):1309–1313. doi: 10.1007/s11033-010-0231-y CrossRefPubMedGoogle Scholar
  39. 39.
    Mani RS, Ganapathy A, Jalvi R, Srikumari Srisailapathy CR, Malhotra V, Chadha S, Agarwal A, Ramesh A, Rangasayee RR, Anand A (2009) Functional consequences of novel connexin 26 mutations associated with hereditary hearing loss. Eur J Hum Genet 17(4):502–509. doi: 10.1038/ejhg.2008.179 PubMedCentralCrossRefPubMedGoogle Scholar
  40. 40.
    Bajaj Y, Sirimanna T, Albert DM, Qadir P, Jenkins L, Bitner-Glindzicz M (2008) Spectrum of GJB2 mutations causing deafness in the British Bangladeshi population. Clin Otolaryngol 33(4):313–318. doi: 10.1111/j.1749-4486.2008.01754.x CrossRefPubMedGoogle Scholar
  41. 41.
    Alvarez A, del Castillo I, Villamar M, Aguirre LA, Gonzalez-Neira A, Lopez-Nevot A, Moreno-Pelayo MA, Moreno F (2005) High prevalence of the W24X mutation in the gene encoding connexin-26 (GJB2) in Spanish Romani (gypsies) with autosomal recessive non-syndromic hearing loss. Am J Med Genet A 137A(3):255–258. doi: 10.1002/ajmg.a.30884 CrossRefPubMedGoogle Scholar
  42. 42.
    Toth T, Kupka S, Haack B, Riemann K, Braun S, Fazakas F, Zenner HP, Muszbek L, Blin N, Pfister M, Sziklai I (2004) GJB2 mutations in patients with non-syndromic hearing loss from Northeastern Hungary. Hum Mutat 23(6):631–632. doi: 10.1002/humu.9250 CrossRefPubMedGoogle Scholar
  43. 43.
    Kalay E, Caylan R, Kremer H, de Brouwer AP, Karaguzel A (2005) GJB2 mutations in Turkish patients with ARNSHL: prevalence and two novel mutations. Hear Res 203(1–2):88–93. doi: 10.1016/j.heares.2004.11.022 CrossRefPubMedGoogle Scholar
  44. 44.
    Uyguner O, Emiroglu M, Uzumcu A, Hafiz G, Ghanbari A, Baserer N, Yuksel-Apak M, Wollnik B (2003) Frequencies of gap- and tight-junction mutations in Turkish families with autosomal-recessive non-syndromic hearing loss. Clin Genet 64(1):65–69CrossRefPubMedGoogle Scholar
  45. 45.
    Kudo T, Ikeda K, Oshima T, Kure S, Tammasaeng M, Prasansuk S, Matsubara Y (2001) GJB2 (connexin 26) mutations and childhood deafness in Thailand. Otol Neurotol 22(6):858–861CrossRefPubMedGoogle Scholar
  46. 46.
    Najmabadi H, Cucci RA, Sahebjam S, Kouchakian N, Farhadi M, Kahrizi K, Arzhangi S, Daneshmandan N, Javan K, Smith RJ (2002) GJB2 mutations in Iranians with autosomal recessive non-syndromic sensorineural hearing loss. Hum Mutat 19(5):572. doi: 10.1002/humu.9033 CrossRefPubMedGoogle Scholar
  47. 47.
    Lazar C, Popp R, Trifa A, Mocanu C, Mihut G, Al-Khzouz C, Tomescu E, Figan I, Grigorescu-Sido P (2010) Prevalence of the c.35delG and p. W24X mutations in the GJB2 gene in patients with nonsyndromic hearing loss from North-West Romania. Int J Pediatr Otorhinolaryngol 74(4):351–355. doi: 10.1016/j.ijporl.2009.12.015 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Csilla Sipeky
    • 1
    • 2
  • Petra Matyas
    • 1
  • Marton Melegh
    • 1
  • Ingrid Janicsek
    • 1
    • 2
  • Renata Szalai
    • 1
  • Istvan Szabo
    • 1
  • Reka Varnai
    • 3
  • Greta Tarlos
    • 1
  • Alma Ganczer
    • 1
  • Bela Melegh
    • 1
    • 2
  1. 1.Department of Medical Genetics, Clinical CentreUniversity of PecsPecsHungary
  2. 2.János Szentágothai Research Centre, Human Genetic and Pharmacogenomic Research GroupPecsHungary
  3. 3.Institute of Family MedicineUniversity of PecsPecsHungary

Personalised recommendations